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Polygraph Reliability: Year Two Report 

Douglas B. Clarkson and Doug Martin 

January 27, 1994 

1     Overview 

This document summarizes the work on the NSA Polygraph project at the University of 

Washington from October, 1992 through October, 1993 (year two of a two year study). The 

reader should be familiar with the year one report on this project which gives a basic outline 

of the polygraph problem and lists the features (summary statistics) that are used to classify 

charts at the University of Washington. The year one report is reproduced as Appendix I. 

Some disruption in year two progress was caused by the departure of Chris Pounds 

during June of 1993. After some time delay we were able to engage the services of Douglas 

B. Clarkson, Ph.D., to replace Pounds for the remainder of the year two work. 

We give a summary of the work during the first part of year two (the period prior to 

Pounds departure) in the first section of this document, the executive summary. The first 

section also contains a brief summary of the work performed after June 30, 1993 (after the 

departure of Pounds and the arrival of Clarkson). A more detailed description of the work 

for the first part of year two can be found in the PolyGraph Reliability: Year Two Report : 

Part 1, reproduced as Appendix II. 

Following the executive summary, a more detailed description of the work performed 

since June, 1993 is given. In the final section we again summarize our findings, and give 

areas where further study might prove useful. 

1 DTIi QUALITY mOPECTED 5 
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2     Executive Summary 

Polygraph tests are used to determine if a subject is being deceptive in their response to 

one or more of a series of questions. Two kinds of polygraph tests were analysed during the 

course of this study. A ZONE of comparison polygraph test is concerned with deception 

regarding a single question or act. In this test multiple "relevant" questions concerning the 

same act are asked. Each relevant question is paired with a single "control" question and 

differences in response between the paired control and relevant questions are observed. In 

the MGQT (modified general question technique) test a set of four relevant questions in 

possibly different subject areas are asked along with two control questions. The MGQT test 

is more of a "fishing" expedition in the sense that questions about more than one event may 

be asked. Thus, it is possible on the MGQT for the subject to be deceptive on no questions, 

on a few questions, or on all four questions. This is in marked contrast with the zone of 

comparison test in which the subject is either deceptive on all questions, or non-deceptive 

on all questions. 

During October and November of 1992, most work involved verifying the integrity and 

quality of the ZONE data charts in the S-PLUS database. December's work concerned 

streamlining the functions used to build features in the first year, building these functions 

around a modern object-oriented paradigm. January and February of 1993 were data man- 

agement months. The previous year's work was condensed and organized on the computing 

systems. Work on the MGQT charts began in March. During this month, the files on some 

charts were converted from Axciton format into S-PLUS format. Work on these initial 

MGQT charts continued through the middle of June, at which point Clarkson became re- 

sponsible for the programming work, and Pounds left the University of Washington (and 

this study) for employment in the private sector. The work performed from October, 1992, 

through June, 1993, is summarized in Appendix II, written by Pounds and Martin, Polygraph 

Reliability: Year Two Report : Part 1. 

After a summer 1993 hiatus, work resumed in of September, 1993. During this month, 

and much of October, the Polygraph software was reorganized and documented, and an 

additional 232 MGQT charts were integrated into the database.   During this time, all of 
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the MGQT charts were also screened for abnormalities, and abnormal charts were removed. 

Only serious abnormalities lead to removal. These included charts in which the wrong types 

of questions were asked (e.g., charts for "stim" tests), charts in which it was impossible 

to determine the question order, and charts in which the polygraph recording was clearly 

erroneous. A listing of the charts removed from the analysis is given in Appendix III. After 

removing the "bad" charts, a total of 426 charts on 144 subjects were analyzed. 

A "feature" is a statistic summarizing some aspect of a polygraph chart. We computed 

only two types of features: features based upon simple summary statistics of a single channels 

data, and features based upon a frequency domain analysis of one or two channels. In all 

cases we analyzed sections of the chart following the beginning of a question segment. A 

detailed listing of the features we used is given in Appendix IV. A general description of how 

features are computed is given in the Year One Report, Appendix I. Variations used in this 

study are described below. 

After the initial data cleaning, a number of preliminary analyses were performed. These 

were designed to tell us whether or not our feature vectors were being computed correctly. 

Analyses verifying our algorithm for computing the fundamental frequency of a chart, looking 

for outliers, and verifying our choice of the span constant in a fixed span smoother were 

performed. These analyses were basically visual, and were usually perfomed upon only a few 

charts. The empirical evidence seemed to justify our choices, as is discussed below. 

After these preliminary analyses, we began an analysis of the polygraph test data using 

the features we had computed. A tree-based classifier was used (see Appendix I) to classify 

each subject as being deceptive or non-deceptive. The methodology used here varied from 

the methods used in the year one report as follows: In year one charts were first classified 

as deceptive or non-deceptive using one tree classifier, and the subjects classification was 

then based upon a second tree built from the deceptive/non-deceptive classification scores       -——r; 

obtained from the three charts collected on each subject. We felt that a better classifier would ™ 
D 

simulataneously consider the information from all three charts, and classify the subjects Q ' 

directly.   This was done by combining features over the three charts for a single subject. 

Alternatively, charts were classified as having or not having anomalies, and the first two   ——«■■-—■«" 

Q Availability. CMsa 
Avail aad/o^  _,,.,, 

ist I I   Spofcta^ ,'n 

ft 

:i 
tt«y?a«aa 



"good" chart (in the sense of few anomalies) were used to obtain a single subject record. 

For all features, the feature value was computed as a comparison of the subjects score on 

a relevant versus a control question. In the ZONE test there were an equal number of control 

and relevant questions, and the control question immediately preceding the relevant question 

was used in the comparison. This was not the case in the MGQT test, where typically four 

relevant but only two control questions were asked. A major consideration in the MGQT 

test was in deciding how to combine the control and relevant questions. This question was 

solved here by avoiding a decision: each relevant question on a chart was compared (via 

differences) with both of the control questions on the chart. In addition, the minimums 

and the maximums of these eight possible differences were used as an alternate question 

combining strategy. 

A large number of tree classifiers were obtained: each of a total of eight sets of features 

resulted in four tree classifiers, two for the two chart combining methods, times two for 

the two ways to compare the relevant and control questions. In addition, we constructed 

tree classifiers for features purely in the frequency domain, constructed tree classifiers for 

features considered to be summary statistics, and we constructed tree classifiers based upon 

the combined set of features. We also used split samples to obtain unbiased estimates of the 

probabilities of misclassification, and this required additional tree classifiers based upon the 

split samples. 

The results obtained from our tree classifiers indicate that there is substantial information 

regarding deception in features based upon descriptive statistics and also in features based 

upon the the frequency domain. However, the frequency domain features seldom entered 

into trees constructed from the combination of both sets of features, indicating that the 

frequency domain features contained little additional information regarding deception when 

compared with features based upon simple summary statistics. Moreover, the frequency 

domain features tended to result in tree classifiers which were less discriminating than tree 

classifiers based upon descriptive statistics. 

The probabilities of misclassification we were able to achieve were highly variable be- 

cause of the small number (24) of non-deceptive subjects available. Moreover, the estimated 



probabilities of misclassification than we obtained were larger than we would have preferred. 

For example, when split samples were used in which one-half of the data was used to fit the 

tree, and the second half of the data was used to estimate probabilities of misclassification, 

we never achieved a misclassification probability smaller than (13.9) percent in any of our 

tree classifiers. Notice that this split-sample tree-based classifier analysis was based upon 

only 72 subjects (and only 12 non-deceptive subjects), not a large number of subjects for a 

tree based classifier. 

We considered using an inclonclusive category, but the nature of our tree-based classifier, 

and the relative lack of non-deceptive subjects, seemed to rule out this possibility, as is 

discussed below. 

3     Analysis Details 

The MGQT (modified general question technique) polygraph test asks four relevant questions 

in up to four different areas. The subject may be deceptive on no relevant questions, on a 

few relevant questions, or on all relevant questions. This aspect of MGQT test makes it 

particularly difficult to study. Because a deceptive subject may be deceptive on as few as 

one of the relevant questions, we should probably classify questions, rather than subjects, as 

being deceptive or non-deceptive. This is not possible in the MGQT test, however, because 

the classification of deception is on a subject by subject basis. 

On both the the MGQT and the ZONE test, each subject is asked different questions. 

On the MGQT test, unlike the zone test, the deceptive subject is not necessarily deceptive 

on all relevant questions. This fact alone tends to wash out the effects of deception in any 

classifier: both deceptive and non-deceptive subjects can be non-deceptive on some relevant 

questions. Obtaining a good classifier in the MGQT test is, then, much more difficult than 

obtaining a good classifier in the ZONE test. 

Listed in a logical order in the remainder of this section is a description of the analyses 

performed at the University of Washington since June of 1993, along with our results. 



3.1 Function Modification and Documentation 

Clarkson joined the polygraph project on a full time basis in September. Although Pounds 

provided substantial educational support to Clarkson prior to leaving the project, the num- 

ber of S-Plus functions and programs which must be learned in the polygraph project is 

substantial, so, partly as a learning exercise (and partly to further streamline the process), 

Clarkson slightly modified and then documented the functions that Pounds had been using. 

The major modification involved the program which converts the Axciton DOS format 

binary files into SUN Unix files. By "dyn.load"ing (dynamically loading) this program into 

S-Plus to make it an S-Plus function, it was possible to eliminate a time consuming and 

disk-storage-exhausting step in the process used to convert from Axciton File structures to 

S-Plus file structures. This saved considerable time and disk space usage (about one-half 

in both cases) over the previous procedure, which required first a conversion to ASCII, and 

then a conversion to S-Plus file format. By converting directly to the S-Plus format, the 

ASCII files were completely eliminated. 

Function documentation involved writing S-Plus help files for most S-Plus functions used 

in the Polygraph Study. These help files saved time in the long run because it made the 

polygraph S-Plus functions much easier to use. This documentation is reproduced here as 

Appendix V. Because of this work, there now exists a usable system of S-Plus functions for 

analyzing polygraph data which other polygraph researchers can use. 

3.2 Data Cleaning 

Pounds had indicated that the initial set of MGQT data had been cleaned in the sense 

that each chart had been examined to ensure that the questions were all present and that 

all required data was available from the Axciton files. In early September additional data 

arrived with an additional 57 charts. To ease the data cleaning effort for these new charts, 

Clarkson wrote a number of S-Plus functions for displaying the charts, the questions file, 

and the order of the event markers on the computer screen. These programs were used to 

clean these 57 new charts, and were then used to visually inspect the charts that Pounds 

had looked at. 
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A large number of problems were found in both sets of charts. The type and order of 

questions in many charts were inappropriate, for example, because the chart contained the 

results of a "stim" or ZONE test, not an MGQT test. Movement was easily detectable in 

many charts (these charts were left in the data set), and on some charts one or more of the 

channels was flat (again, these charts were left in the data set). 

By far the biggest problem with the data concerned the question order. In both the new 

data, and the data that Pounds had initially screened, the order in which questions were 

asked on the third chart was not identical to the question order used in the first two charts. 

Repetition of the two control questions on the third chart was also a problem. Discussion 

with Jeff Johnson at NSA indicated that in the standard MGQT test, the examiner is free 

to give the questions in any desired order on the final chart. Typically (but not always), 

the same examiner will permute the final chart questions in some manner. In the charts 

Clarkson examined, the order of the questions on the first two charts was usually 

TB  II  12 Rl  13 R2 Cl  14 R3 R4 C2 

(on some charts R4 and C2 were interchanged). This is the standard MGQT format. The 

question order on the last chart was generally 

TB  14 II R2 Cl Rl C2 R4 Cl R3 C2 

Here TB = test begin, II, 12, 13, and 14 are irrelevent questions, Cl and C2 are control 

questions, and Rl,   R2,  R3, and R4 are relevent questions. 

The repetition of the final two control questions significantly complicates the analysis as 

now four control questions are possible (instead of the usual two). Only the first two control 

questions were used in all of our analyses. 

For many subjects the first relevant question was a "sacrifice relevant" question. Sacrifice 

relevant questions are not normally scored by a polygraph examiner. In this study sacrifice 

relevant and relevant questions were treated identically. 

Around October 15 an additional 175 charts became available. Because of the earlier work 

at documenting the S-Plus functions and creating functions for cleaning the data, cleaning 

these 175 charts proceeded quickly. When all of the data was clean, a total of 426 charts 

7 



on 144 subjects were available. Of the 426 charts, 354 (or 83.1 percent) were classified as 

deceptive. Of the 144 subjects, 120 (or 83.3 percent) were deceptive. 

3.3 Estimation of the Fundamental Frequencies 

The fundamental frequency for the cardiograph or pneumograph channels is the frequency 

with the greatest energy. Pounds had estimated the fundamental frequency of the car- 

diograph and pneumograph channels using the S-Plus spec.pgram() function. A problem 

encountered in this estimation was that, because of heart-lung interactions, the fundamental 

frequency for the cardiograph channel would occassionaly be estimated at a much too low 

frequency - the effect of respiration on blood pressure would occasionally be so large that 

the cardiograph frequency with greatest energy was the frequency of respiration. 

The solution Pounds proposed was to require that the cardiograph fundamental frequency 

be greater than the equivalent of 35.4 heartbeats per minute. He also required that the 

fundamental frequency on the pneumograph be greater than the equivalent of 3.9 breaths 

per minute. Plots of the estimated fundamental frequency for the cardiograph versus the 

estimated fundamental frequency for the pneumograph indicated that Pounds's solution was 

working correctly. An example is displayed in Figure 1. 

3.4 Exploratory Data Analysis 

To get a better feel for the data, and to check for anomalies, histograms and quantiles 

(minimum, lower quartile, median, upper quartile, maximum) were computed for each of 

the extracted features. Because we expect the distribution of some features to be different 

for the deceptive versus the non-deceptive subjects, histograms of both the deceptive and 

the non-deceptive subjects should reflect a mixture distribution. 

Anomalies, in the form of obviously large data points, were observed in the means, ranges, 

and variances of the observed data in the galvanic skin response channel. These problems 

could be traced to the galvanic skin response channel on the first chart for subject "z8qmts.l". 

Evidently, the computed features accurately reflect the data — the galvanic skin response 

channel for this subject is clearly an anomaly and it is possible that the chart should be 
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Figure 1: Cardiograph and Pneumograph Fundamental Frequencies 
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outcome 

Figure 2: Boxplot of the amplitude of the Fundamental CardioGraph Frequency 

removed (it was not). On two charts a few spectral features were computed as NA's (not- 

a-number), indicating extreme scaling problems in the spectral analysis of the chart data. 

This missing data was replaced with data from another chart on the same subject. 

Boxplots of each feature were computed for the deceptive versus the non-deceptive sub- 

jects. These plots invariable indicated small but likely differences between the distributions 

for the two groups. An example boxplot is given in Figure 2. 

3.5     Standardization 

The scale of polygraph data collected via the Axciton polygraph varies from chart to chart 

as the polygraph examiner adjusts the sensitivity of the instrument to account for subject 

variation. The pattern of variation in the chart data, not its magnitude or scale, is impor- 

tant. For a tree based classifier to make sense, the polygraph data must be standardized to a 

common location and scale. Pounds and Martin had previously arrived at a standardization 
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scheme (discussed below) which seemed to work well, and no additional work on standard- 

ization methods was performed in the June through November, 1993, time frame. Notice, 

however, that the smoothing discussed in the next section can also be considered as a form 

of standardization. 

Because of variations in level over the time frame of the chart, standardization was 

performed at the question level rather than at the chart level. Rather than standardizing 

the control and relevant questions seperately (and thus losing potential location and scale 

differences), standardization of the relevant question and the appropriate control question 

pair was performed simultaneously as follows: The time series associated with each pair 

of control and relevant questions on each channel were combined to obtain a single series. 

Standardization of this series then consisted of subtracting the median series value from each 

element in the series, and dividing each element in the series by the mean absolute deviation 

of the series. 

3.6     Fixed Span Smoother 

Over the course of a test the instruments may record at varying levels because of instru- 

ment adjustments and/or subject movements. A fixed span smoother (here, super smoother, 

Friedman, 1984) can remove much of this variation, which we assumed to be of no relevance 

in the polygraph test. By removing these long term trends attributable to instrument vari- 

ations, we hoped to be able to better compare control question versus relevant question 

features. This type of smoothing was used in some of the tree-based classifiers, and was not 

used in others. 

In the MGQT test, unlike the ZONE test, the control and relevant questions are not 

necessarily adjacent. Rather, the two questions can be three or more questions apart. By 

removing the charts long term trend we hoped to be able to move the time series associated 

with the control and relevant questions to the same central location prior to standardizing 

the data and computing the features. Once the smooth is computed, trend is removed by 

subtracting the smooth from the raw data. The features are computed on the resulting 

series. This kind of smoothing was perfromed over the entire channel on each chart. 

11 



The "span" in super smoother is the fraction of observations in the smoothing window. 

When removing trend, what is needed is a span which removes trend due to instrument 

variations, but which leaves intact local variation due to subject response. If the span is 

too large, then all variation is ignored, and the smooth becomes a measure of central value. 

On the other hand, if the span is too small, then the smooth will reflect local variation 

due to subject response as well as long term trend due to instrumentation changes, and 

both will subsequently removed from the charts data. Then a span which is large enough 

to eliminate local variation but not so large as to eliminate all variation is required. Also 

notice that a small span lessens the effects of observations far removed from the time point 

under consideration. This is important if, say, the examiner adjusts a channel during an 

irrelevant question. We do not want the adjustment to be reflected in a relevant or control 

question. For these reasons, we want the smallest span possible that does not also remove 

local variation due to a subjects response. 

A graphical analysis was used to determine the span for the smooth. Before discussing 

the results of this analysis, notice that since a chart contains, on average, roughly ten times 

as much information as is available in a single question, we would expect the correct "span" 

on a chart to be roughly one tenth the correct span to use on a single question. 

Pounds had estimated the best span (again using graphical methods) when using two- 

questions, a control and a relevant question. He found a span of 0.6 did a good job of 

maintaining local variation and removing long term trend. Our work verified this result. We 

also found that a span of 0.06 worked well when smoothing the entire chart. This is consistent 

with the span of 0.6 when smoothing each question separately. An example smooth for the 

lower pneumograph channel is given in Figure 3. In this figure the top series is raw data, the 

middle series is the estimated smooth, and the lower series is the raw data minus its smooth. 

Smooths were used for two additional purposes: The spectral estimation proecedure 

works best if long term trends are removed prior to estimating the spectrum. Also, especially 

with respect to the cardio channel, it is often easier to see important features or trends in 

the data when a smooth is used in place of the raw data. The idea is to look more at blood 

pressure, and less at heart beats. One set of feature vectors used a smooth of the data when 

12 
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z738dyx.1 , channel - 4 , »pan -  0.6 

Figure 3: Smoothing an Entire PneumoGraph Chart 
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computing some simple summary statistics. 

3.7 Evaluating the Charts 

Anomalies were visible on many charts. Some anomalies led us to simply remove the chart 

from further consideration: the question order was unknown or wrong, a channel was unus- 

able, the event markers were not present, or if present, were in the wrong order, etc. Other 

anomalies such as jumps in one or more channels, a flat galvanic skin response for some 

or all of the data, or an unusual galvanic skin response (very low readings in an irrelevant 

question, etc.) could not be handled so easily. Charts with these anomalies were categorized 

from one to three, with one being a "good" chart with no anomalies, and two and three 

being progressively worse. In some analyses the charts with scores of three were removed. 

The hope was that with these charts removed, we would obtain better tree classifiers. 

If the process of scoring charts were to be repeated and the charts reclassiffied, slightly 

different results would probably be obtained. Even so, it is unlikely that a chart we rated a 

"1" would be reclassified as a "3", and vice versa. Of 426 charts, 280 were rated good and 

scored as a "1" (132 subjects), 117 were rated worse and scored as a "2" (84 subjects), and 

29 were rated "bad" and scored as a "3" (26 subjects). Thus, 26/426 or about 7 percent of 

the charts were removed in some analyses. 

3.8 New Galvanic Skin Response Features 

It was felt that distance measures between the spectra of the galvanic skin response channel 

might be useful for classifying deceptive versus non-deceptive individuals. These measures 

consist of the maximum absolute difference between the integrated spectrum for the relevant 

versus the control questions, the sum of these absolute differences, and the sum of the squares 

of these differences. These spectral statistics were computed for smoothed (and standardized) 

charts (using a smoothing span of 0.6), and for standardized charts without smoothing. By 

"smoothed charts" we mean the smooth of the time series, not the difference between the 

input data and the smooth. When smoothed data was used, the smoothing was performed 

on a question by question basis using a span of 0.6. As it turned out, these new features did 
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not seem to help much in the tree classifier. 

3.9 New Cardiograph and Pneumograph Features 

Comparison of our features with those computed by APL revealed a number of possible new 

features. Among these were features based upon the difference of two smooths on a channel. 

The first smooth had a narrow span (span = 0.02) in order to capture local structure, while 

the second smooth had a wider span (span = 0.06) in order to eliminate global trend. The 

final channel data was taken as the difference between the two smooths. Simple summary 

statistics (minimums, maximums, and midranges) were computed as features. For some 

features, a lag one difference was used. The smoothed features were often encountered in 

the optimal tree classifier. 

3.10 Pairing of Control and Relevant Questions 

In the zone tests each relevant question was paired with the closest control question. This was 

also possible in the MGQT tests, but rather than pairing with the closest control question, 

it was decided to pair with each of the control questions. Because the order and number 

of control questions was often different on the third chart, only the first occurence of each 

control questions was used (on most charts each control question was only asked once.) This 

type of pairing doubled the number of features to be used in constructing classification trees. 

3.11 Chart Combining Methods 

Previous work at the University of Washington has produced tree classifiers which predicted 

deception on each chart. These chart classifications were then combined over all charts on a 

subject using a second tree classifier based upon the chart classification scores. This second 

classifier was used to classify each subject. Because we felt that information was lost in this 

two stage procedure, the classification in year two was based upon a single tree classifier 

which could be used to classify subjects directly. This required a specification of methods 

for combining the charts on a subject to obtain a single subject feature vector.  Two such 
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methods were used. In the first, all three charts (actually, the first three valid charts) on a 

subject were combined into a single subject record (with three times as many features). If 

only two charts were available, the second chart was duplicated as the third chart so that 

all subjects had complete data records. 

The second method for combining subject charts attempted to select only charts which 

were relatively free from anomalies. As discussed above, some charts were rated as better 

than others with respect to the presence or absence of anomalies. Using these scores, we 

combined the first two charts on a subject which we had scored as a "1" or as a "2". In 

this second method, if only one "good" chart was available on a subject, this chart would 

be duplicated and used as the final chart for the subject. 

3.12     Computing a Tree Classifier 

At this point it is worth reviewing the steps involved in computing a tree classifier. After 

the raw data is moved into the S-plus database, eight matrices summarizing this data are 

computed. These matrices contain the feature vectors to be used in constructing the tree 

classifiers. There is one row in each matrix for each chart in the database. 

A feature is a statistic computed using a control and a relevant question on a channel 

of a chart. Each combination of the four relevant questions is combined with each of the 

two control questions, usually as the difference between the relevant and control questions. 

Each chart has eight such combinations. Most features are also computed for each of the 

three channels on the chart (galvanic skin response, cardiograph, and lower pneumograph). 

Then there are 24 occurances of the feature statistic on each chart. The tree classifier is 

constructed using as many as three charts per subject. Then in the tree classifier, a feature 

statistic can appear 72 times for each subject. Typically there are six features per feature set, 

so that the tree classifier is often based upon 6*72 or 432 feature variables on each subject. 

Notice that, at best, there are at most 144 subjects. 

There are eight sets of feature statistics. Four of these sets are based upon summary 

statistic features, and four sets are based upon the frequency domain. Variables from each 

of these two groupings of four feature sets were selected as follows: Each set was input into 
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the do.tree() function in S-Plus. The do.tree() function merged the charts on each subject 

to obtain 144 records, one for each of the subjects. Two methods ofmerging the charts were 

used, as is discussed above. (In the first chart combining method, the first three charts for 

a subject are concatenated, in order, to obtain the single subject record. If only two charts 

were available, the second chart was duplicated and its features were used as the features 

in the third chart. In the second chart combining method, only two charts were combined, 

but charts which were rated "3" with respect to chart anomalies, the worst charts, were 

removed from the database. If only one good chart was available on a subject, its values are 

duplicated for the second chart.) In both chart combining methods it was assumed that the 

charts follow a time sequence, with chart one being the first chart recorded, chart two being 

the second chart recorded, etc. 

Once the charts had been combined, a single tree was computed for the combined charts. 

Standard practice with classification trees requires that the initial classification tree contain 

more nodes than are really required - the tree is overfit with too many nodes. Cross- 

validation is then used with this overfit tree to determine the number of nodes which should 

be used in the final tree classifier. After performing this cross-validation, the do.tree() 

function would save all of the features vectors from the initial overfit tree for later use. 

3.12.1     Preliminary Variable Selection 

As indicated above, the study design required the examination of a large number of features 

(58 in all). This number of features is then multiplied by as much as 72 to obtain the final 

variables to be used in constructing a tree classifier. Since there are only 144 subjects a 

variable selection procedure was required to obtain the most important features from the 58 

times 72 possible features. 

The variable selection strategy used is as follows: The eight sets of features were split into 

two distinct groups - features involving simple summary statistics, and frequency domain 

features. Label the sets of features based upon simple summary statistics as GS1, Gl, G2, 

and G2A, and label the frequency domain features as G3, G4, G5, and FD2. For each matrix 

in each set, the do.treeQ function is used to create a tree, and the variables in the initial 
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overfit tree classifier are saved in a data frame. Two such data frames were obtained, one for 

the simple summary statistics, and a second for the frequency domain features. These two 

data frames are then combined into a third data frame containing both sets of features. The 

final trees, one for the simple summary statistics, one for the frequency domain variables, 

and one for all features combined, are computed from these data frames. 

3.13     The Tree Classifiers 

Rather than give all computed tree classifiers, information on only twelve will be given. All 

variables selected in the overfit tree are given. A "*" is used to indicated variables that 

were also included in the final cross-validated tree classifier containing the number of nodes 

indicated by the cross-validation. The channel numbers are as follows: 1 - GSR, 2 - cardio, 

and 4 - pneumo. The control and relevant question used in computing the feature are given, 

as is the chart from which the feature originates. Variable names are listed in Appendix IV 

with a brief description. 

• Chart combining yields three charts per subject 

- Question comparing looks at all possible control-relevant question combinations 

* Model 1 - Simple summary statistics 

1. *mid.9.1, channel 1, R4 - Cl, chart 2 

2. *midrange, channel 1, R3 - Cl, chart 3 

3. SP25, channel 1, R4 - C2, chart 2 

4. SP75, channel 1, R2 - C2, chart 1 

5. *maximum, channel 2, Rl - C2, channel 2 

6. midrange, channel 4, R2 - Cl, chart 2 

* Model 2 - Frequency domain 

1. *phasel, channels 2 and 4, Rl - C2, chart 3 

2. *amplh2, channels 2 and 4, R2 - Cl, chart 3 

3. amplhl, channels 2 and 4, Rl - C2, chart 1 
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4. cohlh3, channels 2 and 4, R4 - C2, chart 3 

5. mxabsm, channel 1, R1-C2, chart 2 

6. coherr2, channels 2 and 4, R2 - C2, chart 1 

7. fundfreq, channel2, Rl - C2, chart 1 

* Model 3 - Frequency domain and simple summary statistics 

1. *mid.9.1, channel 1, R4 - Cl, chart 2 

2. *midrange, channel 1, R3 - Cl, chart 3 

3. SP25, channel 1, R4 - C2, chart 2 

4. SP75, channel 1, R2 - C2, chart 1 

5. *maximum, channel 2, Rl - C2, channel 2 

6. *midrange, channel 4, R2 - Cl, chart 2 

Question comparing looks at minimum and maximums of all possible control- 

relevant combinations 

* Model 4 - Simple summary statistics 

1. *MAXAMP, channel 1, max, chart 2 

2. *SP75, channel 4, min, chart 2 

3. med240, channel 1, max, chart 2 

4. variance, channel 4, min, chart 1 

5. *midi.8.2, channel 1, min, chart 1 

6. *midi.8.2, channeW, max, chart 1 

7. maximum, channel 1, max, chart 1 

8. med240, channel 2, max, chart 1 

* Model 5 - Frequency domain 

1. *smsqsm, channel 1, max, chart 1 

2. *amplh2, channels 2 and 4, min, chart 1 

3. fund2, channels 2 and 4, max, chart 2 

4. phasel, channels 2 and 4, min, chart 2 
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5. phaserl, channels 2 and 4, max, chart 2 

6. cohlhl, channels 2 and 4, min, chart 2 

7. coher2, channels 2 and 4, max, chart 1 

* Model 6 - Frequency domain and simple summary statistics 

1. *MAXAMP, channel 1, max, chart 2 

2. *mxabrw, channel 2, max, chart 1 

3. SP75, channel 4, min, chart 2 

4. *minimum, channel 1, max, chart 1 

5. *midi.8.2, channel 1, min, chart 1 

6. midi.8.2, channel4, max, chart 1 

7. fundfreq, channel 2, max, chart 3 

8. range, channel 2, min, chart 1 

Chart combining yields two charts per subject 

- Question comparing looks at all possible control-relevant combinations 

* Model 7 - Simple summary statistics 

1. *mid.9.1, channel 1, R3 - C2, chart 2 

2. midrange, channel 1, R2 - Cl, chart 2 

3. maximum, channel 2, R2 - Cl, chart 1 

4. range, channel 1, R3 - C2, chart 2 

5. *medianl50, channel 2, R3 - Cl, chart 2 

6. medianöO, channel 2, R3 - Cl, chart 2 

7. mid.9.1, channel 1, R3 - Cl, chart 1 

* Model 8 - Frequency domain 

1. *mxabsm, channel 1, Rl - C2, chart 1 

2. *amp2al, channels 2 and 4, R3 - C2, chart 1 

3. *amplh2, channels 2 and 4, R3 - C2, chart 1 
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4. choher2, channels 2 and 4, Rl - Cl, chart 2 

5. coh2, channels 2 and 4, R2 - C2, chart 2 

6. coherrl, channels 2 and 4, Rl - Cl, chart 1 

7. phase 1, channels 2 and 4, R3 - Cl, chart 2 

8. choher2, channels 2 and 4, Rl - Cl, chart 1 

* Model 9 - Frequency domain and simple summary statistics 

1. *mid.9.1, channel 1, R3 - C2, chart 2 

2. *midrange, channel 1, R2 - Cl, chart 2 

3. maximum, channel 2, R2 - Cl, chart 1 

4. range, channel 1, R3 - C2, chart 2 

5. *medianl50, channel 2, R3 - Cl, chart 2 

6. medianöO, channel 2, R3 - Cl, chart 2 

7. fundfreq, channel 2, Rl - Cl, chart 2 

Question comparing looks at minimum and maximum of all possible control- 

relevant combinations 

* Model 10 - Simple summary statistics 

1. *midrange, channel 1, min, chart 1 

2. midrange, channel 4, min, chart 2 

3. midrange, channel 2, min, chart 1 

4. MAXAMP, channel 1, min, chart 2 

5. *minimum, channel 1, min, chart 2 

6. *minimum, channel 1, min, chart 1 

* Model 11 - Frequency domain 

1. *smsqsm, channel 1, max, chart 1 

2. mxabsm, channel 2, max, chart 1 

3. smsqrm, channel 4, min, chart 2 

4. smabrw, channel 4, min, chart 2 
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5. fund2, channels 2 and 4, max, chart 1 

6. coherr2, channels 2 and 4, max, chart 2 

7. fundfreq, channel 2, min, chart 2 

8. smabrw, channel 2, min, chart 2 

* Model 12 - Frequency domain and simple summary statistics 

1. *midrange, channel 1, min, chart 1 

2. midrange, channel 4, min, chart 2 

3. midrange, channel 2, min, chart 1 

4. MAXAMP, channel 1, min, chart 2 

5. *minimum, channel 1, min, chart 2 

6. *minimum, channel 1, min, chart 1 

Table 1 summarizes the above models. In this table two estimates of the misclassification 

probabilities are used. The first two misclassification probabilities with column labels best 

and indict are obtained using resampling. They are probably too optimistic. The misclas- 

sification probabilities with column labels split-ND, split-D, and split are obtained using 

split samples. These probabilities are unbiased. Notice that in the split sample technique 

only 12 non-deceptive subjects were available, so the variability of the estimated probabilities 

of misclassification is high. 

Column labels in the table are as follows: 

• nodes - the number of nodes indicated by the cross-validation 

• best - the best estimated probability of misclassificiation obtained using any number 

of nodes from the overfit tree 

• indict - the estimated probability of misclassification obtained when a tree with the 

number of nodes indicated by cross-validation is used 

• split-ND - the estimated probability of misclassifying a non-deceptive subject when 

a split sample is used 
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Table 1: Summary of the Classification Trees 

MODEL nodes best indict split-ND split-D split 

model 1-3-8-S 4 4/144 12/144 4/12 9/60 13/72 

model 2-3-8-F 3 4/144 19/144 8/12 14/60 22/72 

model 3-3-8-C 5 4/144 7/144 2/12 12/60 14/72 

model 4-3-2-S 5 8/144 9/144 7/12 3/60 10/72 

model 5-3-2-F 3 9/144 24/144 11/12 12/60 23/72 

model 6-3-2-C 6 7/144 9/144 7/12 3/60 10/72 

model 7-2-8-S 3 6/144 17/144 5/12 6/60 11/72 

model 8-2-8-F 4 8/144 18/144 8/12 14/60 22/72 

model 9-2-8-C 4 6/144 9/144 5/12 6/60 11/72 

model 10-2-2-S 4 4/144 12/144 8/12 6/60 14/72 

model 11-2-2-F 2 10/144 24/144 11/12 4/60 15/60 

model 12-2-2-C 4 4/144 12/144 8/12 6/60 14/60 

• split-D - the estimated probability of misclassifying a deceptive subject when a split 

sample is used 

• split - the estimated probability of misclassification for all subjects when a split sample 

is used 

Following the model label is the number of charts used in the model, either 3 charts, or the 

first 2 good charts. Following the number of charts used is a number indicating the method 

used for combining control and relenvant questions. This number is 8 if all combinations of 

relevant and control questions were used, or 2 if the minimums and maximums were used. 

Finally, the last model descriptor in the model label is an S for summary statistic features, 

an F for frequency domain features, or a C for combined summary statistic and frequency 

domain features. 

From the table it is clear that the summary statistic features out perform the frequency 

domain features. Notice, however, that when combined feature sets are included for possible 
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selection by the tree classifier, then the frequency domain features can still be important. 

The estimated probabilities of misclassification are disappointing. One reason for this 

may be the paucity of non-deceptive subjects, especially when the split sample is used. While 

the misclassification probabilities listed under column indict seem good, because they are 

based upon resampling, they may be optimistic. 

3.14     An Inconclusive Category 

While an inconclusive category could be easily incorporated into the probability estimates, 

there seems little point in doing so. With only twelve non-deceptive subjects available for 

classification in the split-sample technique and 24 non-deceptive subjects overall, yet another 

category of probabilities to estimate would only serve to add variability to the estimates. 

Moreover, preliminary investigations indicated little benefit from an inconclusive category. 

The probability of correct classification is already disappointingly low. Use of an inconclusive 

category would only serve to make it even lower. 

4     Summary 

A number of problems with the MGQT data have been discussed. Perhaps the biggest 

problem is the lack of data for non-deceptive subjects. Less than 17 percent of our subjects 

are non-deceptive. Simply by classifying all subjects as deceptive, an overall error rate of 17 

percent can be obtained. Another problem with the small number of non-deceptives subjects 

occurs in the tree-classifier. Very few non-deceptive nodes can be obtained when only 24 

non-deceptive subjects. 

Much as we would like to be, it is difficult to be definitive with respect to the information 

in the frequency domain when classifying subjects in a polygraph test. The frequency domain 

features are clearly less important than the simple summary statistic features, and yet they 

appear to have some ability to classify subjects as to their deceptive/non-deceptive status. 

Because the data is quite messy and because there are relatively few non-deceptive subjects, 

it does not seem unreasonable to believe that many of the results obtained here are random: 
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given another set of similar data, quite different variables may enter the model, and we might 

obtain quite different estimates for our probabilities of misclassification. 
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CLASSIFICATION TREES AND 

SPECTRAL ANALYSIS METHODS 

APPLIED TO POLYGRAPH DATA 

R. Douglas Martin, Ph. D. and Christopher Pounds 

University of Washington, Seattle 

Summary 

We have introduced frequency domain spectral analysis techniques for he 

problem of classifying digitized polygraph data from the Axciton Poly- 

graph System. Our primary classification tool has been the tree based 

classifier which splits the data into distinct subgroups according to the 

binary response of "deceptive" or "no deception." The raw signal is stan- 

dardized by taking control-relevant question pairs as a single observation 

and robustly standardizing them. Range based features, 1st difference 

based features and smoothed features are used along with several spec- 

tral features to train the classification trees. Cross-validation is used to 

select a tree based model for each chart and then for each person. A 

final error rate of 12.6% was obtained for a sample of 199 subjects with 

two or more charts each. 

1     INITIAL WORK 

We began background study of this problem in January of 1992, and began working with the 

Zone Comparison test data in March of 1992, when Chris Pounds visited to Johns Hopkins 

Applied Physics Laboratory in Maryland. There he met with Dale Olsen and John Harris 

to discuss data formatting issues. APL's work had been done on the PC platform, and so 

a considerable time was required to translate the programs to read the digitized data in a 

form suitable for the UNIX workstation environment at the University of Washington. 



APL Data Organization 

In June, Chris Pounds returned to APL to present the tree based classification methods to 

the polygraph examiners. This trip also allowed us to obtain 31 disks containing data for 605 

polygraph charts with 219 different names. Because of test interruptions, these 219 names 

consist of charts from fewer than 219 individuals.   APL had organized the data according 

to time of arrival and source of the data. The "A" dataset consisted of 129 charts received 

before May of 1992, and the "B" dataset consisted of 90 charts received in May and June 

of 1992.  Within these groupings, the following source groups were separated into different 

directories:   FBI , Clayton County, Vermont State Police, SLED, DEA, Marion County, 

Birmingham and Anniston. See Figure 1 for an explanation of these steps on the A dataset. 

A compression algorithm called pkzip (which can be used on both PC and UNIX platforms) 

was required to compact the collection of data onto 31 disks. Each disk represented a subset 

from each of the source directories. 
The Zone-Comparison Test orders questions on a chart in the following format: 

1. TB Test is about to begin 7. C2 Control 
2. N Neutral 8. R2 Relevant 
3. SR Sacrifice Relevant 9. Sy Symptomatic 
4. S Symptomatic 10. C3 Control 
5. Cl Control 11. R3 Relevant 
6. Rl Relevant 12. XX End of Test 

Responses are recorded from the following channels: 

Galvanic Skin Response 
Cardio 

Upper Respiratory 
Lower Respiratory 

The Axciton Polygraph System creates three files for each chart that is processed. Charts 

from the same subject are labeled with the same prefix and filename extensions depend on 

the contents and the chart. The "x" below indicates the chart number (ranging from 1 to 

5). The "0" is a place holder to give a 3 place extension to the file. 

Extension Contents 
0x1 Question and Event Markers 
0x2 Chart Data (Compressed) 
0x3 Question Text 



APL File Organization 

A Data 

FBI 

Vermont 

3 files per chart 
2-5 charts per subject 
74 subjects 

3 files per chart 
2-5 charts per subject 
33 subjects 

Clayton 

Others 

3 files per chart 
2-5 charts per subject 
18 subjects 

3 files per chart 
2-5 charts per subject 
4 subjects 

3 Axciton Files per subject 

$$4#51FR.011 $$4#51FR.012 $$4#51FR.013 
Question Marker file       Chart Data Hie Question Text File 

Data files are transferee! 
to UNIX workstations 

Marker and Data Files are 
processed with routines 
that translate the Axciton 

format to ASCII. 

ASCII files are processed 
into S-plus 

Figure 1: File Processing Steps 

When the polygraph examiner uses the Axciton System, he presses keys at the beginning 

and end of each question. Since the questions are given sequentially as listed above, the key 

presses can be used to label the data with question labels. 

2    DATA ORGANIZATION 

When dealing with a large database, the system must be organized in such a way to allow 

the analyst to process and explore the information easily. The S-Plus language is itself 

very powerful and contains a very extensive analytic toolbox which lends itself to in depth 

exploration of time series objects.   However the language is not particularly powerful as a 



database tool. Thus much time and effort at the early part of the contract was spent setting 

up an efficient polygraph database in S-Plus. 

By modifying a program from the APL DOS system, the Axciton files were translated 

into ASCII and then were arranged into subgroups roughly according to the directories that 

APL had stored them in. Within the subgroups, they were then processed into S-Plus and 

the original ASCII files were stored on tape. 

S-Plus processing consists of translating the chart data into the matrix data objects used 

by the S-Plus data analysis system. In addition, the event marker files are processed into 

separate objects which list the beginning and end of each question and label each question 

based on the order above. See Figure 2. 

After the labeling was completed, the labels were checked for internal consistency. If 

files followed an abnormal pattern (for example, an uneven number of controls compared 

to relevants, or fewer than 8 segments) then the charts were examined for movements and 

artifacts and the question scripts were examined. Some deletions were made at this stage, 

but further screening is possible. 

Once the database and question labels were completed, functions for display and analysis 

of the database were built. The functions we wrote had four principal arguments to contend 

with: 

1. Which chart or subject should be displayed? 
2. What questions within the chart should be shown? 
3. Which channels are important? 
4. Should any analysis plots be shown? (including detrending, first 

differences, or spectral representations) 

To build up the vector of information from all of the charts, a function loops over each 

subject and then over the selected subject's charts. For each chart, the channel and questions 

of interest are selected, and then the feature is calculated for each question of interest. 

Depending on the complexity of the feature, it took up to five and one-half hours on a Sparc 

IPC to extract a single feature from the 567 charts. The process was completely automated 

so the bulk of computing could be accomplished in overnight jobs. These feature vectors 

were given to the classification tree tools for analysis. 



Splus File Organization 

FBIl 

FBI 2 

FBI 3 

Clayton 1 

o 
o 
o 

DEA1 

Files are grouped into 11 
separate directories for 
ease of handling. 

For each Chart Data file, the 
Marker file is processed into 
Splus to make an Splus 
object which contains character 
labels (like S, Cl, Rl, C2) 
which can be used when 
accessing the charts. File 
names are modified to remove 
symbols (#,©, %) since they 
are reserved in UNIX. These 
steps are done on each directory 
one at a time. 

The separate directories 
are linked with an attach () 
command which allows 
access to all of charts from 
a single directory. 

It is in this working directory 
that functions process the 
charts and the features 
are stored. 

Label object example 

TB N SR s Cl Rl C2 R2 SY C3 R3 XX 

Time 

Figure 2: S-Plus Database Organization 



An example of a chart plot produced by one of the functions created is given in Figure 3. 

The first row is the GSR channel; the second row is Cardio. The third row is lower respiratory. 

Typically the upper and lower respiratory channels are very similar, so the upper channel is 

often omitted from plots. 

3    FEATURE VECTORS 

As usual in classification, the tree based method uses feature vectors as inputs. We call the 

coordinates of a feature vector features. Because of calibration differences in the the Axci- 

ton Polygraph System, tests administered to different subjects will often result in entirely 

different ranges for the data in any given channel. This is seen in the first row of Figure 4 

where the GSR channels have different ranges. 

Standardization 

Polygraph data is highly variable, due to both instrument calibration variability and cross- 

individual variability. See for example the raw polygraph GSR channel data for a control- 

relevant question pai|rm the first row of Figure 4. Thus it is very important to standardize the 

raw polygraph data. Initially we tried standardizing each question separately by subtracting 

off the mean of the data and dividing by the standard deviation. Unfortunately, this method 

loses useful information contained in the comparative differences between questions. 

Instead, we combined the C-R pairs and standardized the entire C-R sample using robust 

location and scale estimates. The median was used as the location estimate, and the median 

absolute deviation about the median (MADM) was used as the scale estimate. Both estimates 

are know to be highly robust (Hampel,ei a/, 1986)[1] The second row of Figure 4 shows 

standardized data after taking the adjacent Control-Relevant pair and standardizing them 

as a single observation. By rescaling this way, we can make the relative differences ( between 

the max of the control and max of the relevant, for example) easier to compare. 
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Figure 3: Chart Plot Example 



Control FWevant 
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150  160  170  180  190 200 

Seconds 

Figure 4: Comparison of Standardization Methods 

Features 

The features we use are grouped into two sets according to their origins. The first group 

consists of features that came from APL's work, plus a few more. These are quantities like 

medians and range estimates of the standardized series or of a detrended or differenced series. 

The second set of features is based on a spectral representation of the time series, which will 

be discussed in Section 4. These are the new features we are investigating. 

Table 1 summarizes the features calculated on the data after it was standardized. Most 

of the APL and APL based features look at the location or variability of the time series or 

the first difference of the time series. We use the first difference to approximate the rate 

of change in the time series. Features 1-4, 15 and 16 explore the variability in the signal, 

the idea being that some subjects will have greater variability if they are being deceptive. 

We calculate features 5,6,11-14 based on the first difference of the series. Features 7 and 8 

examine the smoothed series and take its first difference which reflects the overall trend in 
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the series and how it changes over time. Extreme values for features 9 and 10 can tell us 

that the smoothed series is very variable and hence the trend is a strong component in the 

series. Each of the first 16 features was calculated for all four channels. 

The rest of the features 17-31, are based on spectral analysis. Features 17,18 and 22 were 

calculated using a single channel of information at a time, but because of their multivariate 

nature, features 19-21, and 23-31 require two channels. Because of the strong harmonic 

structure of cardio and the respiratory channels, only cardio and upper respiratory together 

and upper and lower respiratory together were used to calculate each of these bivariate 

spectral features. 

After calculating the features for each C and R question separately, the control feature 

is subtracted from its appropriate relevant response feature thereby obtaining a "difference" 

feature for each C-R pair, except in the case of feature 22 which is discussed below. Since 

charts generally contain 3 C-R pairs, three difference features are typically computed for 

each chart. If only two C-R pairs are present, then we create a third difference feature by 

averaging the first two pairs. This was done to insure an equal number of responses from 

each chart which facilitates the CT method. 

The Integrated Spectral Distance, feature 22, is calculated in a different way that the 

others by taking the standardized difference between the cumulative (summed) values of the 

unsmoothed periodogram for a control and the subsequent relevant question. Figure 5 shows 

the difference in a control-relevant pairing. Unlike the other features, this feature measures 

the distance between a control and a relevant pair directly in its calculation. 

4    FREQUENCY DOMAIN 

Univariate Time Series 

The principle behind our use of frequency domain features is that a time series Xt can be 

approximately represented by a Fourier series with random coefficients at certain frequen- 

cies.   This series can be represented in terms of sines and cosines or in terms of complex 
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Table 1: Features Investigated 

Feature Feature 
Number Description 

1. Maximum Value Achieved 
2. Minimum Value Achieved 
3. 75%ile-25%ile from 2-14 seconds 
4. 90%ile-10%ile from 2-14 seconds 
5. 80%ile-20%ile of first difference from 0-8 seconds 
6. 80%ile-20%ile of first difference from 0-4 seconds 
7. Median from 0-8 seconds of first difference of smoothed series 
8. Median from 8-end seconds of first difference of smoothed series 
9. 25%ile of first difference of smoothed series 

10. 75%ile of first difference of smoothed series 
11. Median of first difference from 0-2 seconds 
12. Median of first difference from 0-5 seconds   _ 
13. Median of first difference from 0-8 seconds 
14. Mean of first difference 
15. Maximum-Minimum 
16. Variance 
Ll. Fundamental Frequency of detrended series (smooth trend removed) 
18. Maximum Spectral value of detrended series 
19. Phase at Fundamental Frequency 
20. Spectral value at Fundamental Frequency 
2J. Coherency at Fundamental Frequency 
22. Integrated Spectrum Distance 
z3. Spectral value at fundamental frequency of Channel 1 
24. Spectral value at fundamental frequency of Channel 2 
25. Spectral value at (fundamental frequency of Channel 1) * 2 
26. Spectral value at (fundamental frequency of Channel 1) * 3 
27. Spectral value at (fundamental frequency of Channel 1) * 4 
28. Coherency at fundamental frequency of Channel 1 
29. Coherency at fundamental frequency of Channel 2 
30. Coherency at (fundamental frequency of Channel 1) * 2 
31. Coherency at (fundamental frequency of Channel 1) * 3 

Times are measured from the beginning of the question. 
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A rigorous version of the approximate equation (1) is known as the Spectral Representa- 

tion Theorem. It is necessary to introduce the concept of covariance before we discuss this 

theorem. 

The covariance of two random variables is a measure of their association or relatedness 

given by 

Cov{X, Y) = Cx,y = E[(X - E(X))(Y - E(Y))}. 

In order to compare covariances, it is necessary to transform them to a standardized scale. 

We do this by dividing by the product of the standard deviations of Xt and Yt and call this 

the correlation. 

corr(X,Y) = px,y = —'—. 
0~XCTy 

The random variables X and Y are are said to be uncorrelated if 

E[(X - E(X))(Y - E(Y))} = 0 

For time series, the covariance is generalized to the autocovariance function 

Ct,t+i = Cov(Xt,Xt+i) 

The time series Xt is said to be covariance stationary if the expected value of Xt has a 

constant value /i for all t, and Ct,t+i depends only on /. We then write C\ = Cov(Xt,Xt+i). 

Then, the autocorrelation function: 

PC) = £ 
is the correlation coefficient for Xt and Xt+i- 

Theorem: (Spectral Representation) 

Let Xt be a covariance stationary time series. Then there exists an complex stochastic 

process Z(X), A G [0,1] having stationary orthogonal increments such that Xt can be 

written as 

Xt = f\ ei2"MdZ(X) 
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and for -\ < A2 < A2 < \ 

Var(Z(X2)-Z(X1)) = F(X2)-F(X1) 

where F is a nondecreasing function with ^(1) = Var(Xt) = cr^. 

The process Z(A) has orthogonal increments if the correlation is zero for non-overlapping 

intervals of Z(X), A € [-5,5]. So 

E[Z{X4) - Z(X3))(Z(X2) - Z{\x)] = 0        if Xx < A2 < A3 < A4 

This function F(A),A 6 [0,1], is called the spectral distribution function of Xt, and its 

derivative / is the spectral density function: 

F(X)= fX f{x)dx 
Jo 

Using the spectral representation it is straightforward to establish the following well 

known Fourier transform pair relationships between the autocovariance function C\ and its 

spectral density /(A) 

Ci = I' f(X)ei2*'xdX,        I = 0, ±1, ±2 ± 3 . 
Jo 

f(X)=   J2 Cte-^
l\        A €[0,1]. 

l=—oo 

Estimation of /(A) 

A very common way to investigate a spectral density function /(A) is to compute a smoothed 

periodogram estimate following the steps below: 

1. Detrend the data. 
2. Apply a "data taper" to reduce leakage. 
3. Compute the Fourier coefficients X(Xk) using the FFT (Fast Fourier Transform) 
4. Compute periodogram P(Xk) = |X(AA:)|

2
. 

5. Smooth the periodogram to reduce variance 
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Figure 6: Smoothing and Detrending 

The initial detrending step is needed to remove low frequency energy that may reduce 

our ability to see other features, e.g., lower energy cycles in the series. Typically we will use 

a smoother with a variable span to remove any long term trends that are in the data. 

Figures 6a-b show the raw periodogram P(\k) and a smoothed periodogram S{Xk) for 

the cardio channel time series, with the detrending step 1. Notice how the smoothing used in 

computing S{Xk) reduces the noise evident in P(Xk). Figures 6c-d show the same quantities 

as in Figures 6a-b, except that now the detrending step is included. Note the removal of the 

low frequency energy which dominates Figures 6a-b. 
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Figure 7: GSR Smoothed Periodogram 

Figure 8: Lower Respiratory Smoothed Periodogram 

The second data tapering step helps us to smooth out leakage from neighboring frequen- 

cies. A 10% cosine taper is applied to both ends of the series to reduce this effect. See for 

example see Bloomfield, 1976[2], for information on tapering. 

The Fast Fourier Transform gives a decomposition of our detrended and tapered time 

series into orthogonal sines and cosines. The periodogram computed in step 4 is an unbiased 

estimate of the true but unknown spectral density /(A). However, the variance of P(Afc) 

does not go to zero as the sample size/series length increases and so smoothing is needed to 

reduce variability. 
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Note that the spectrum estimate for the Cardio series has a distinctive structure that 

corresponds to the strongly periodic character of the series. The main feature in this figure 

is that the peaks appear to be evenly spaced. The main peak occurs at the fundamental 

frequency, and the other peaks are at or near integer multiples of the fundamental. These 

"echoes" of the fundamental are called the harmonics of the series. They help describe the 

deviations of the series away from the sinusoidal pattern determined by the fundamental. 

The GSR series spectrum is shown in Figure 7. Notice that most of the variability is 

coming from the very low frequencies, and there is no evidence of periodic behavior. This 

means that the GSR series is mostly trend like in nature. 

Figure 8 is a typical spectrum from the lower respiratory series over the same question as 

the cardio series in Figure 6d. This series has been detrended, but a very strong low frequency 

oscillation remains. This same frequency appears on the cardio above which suggests that 

this signal is induced by the respiratory process on the cardio-vascular process. We also see 

some evidence of the higher frequency harmonics in the respiratory process. 

We are interested in measuring how different a control question response is from a relevant 

question response, in terms of spectral densities. One common approach is to construct a 

distance between spectral distribution functions (integrated spectral densities) as follows. 

The Integrated Spectral Densities (ISD) plots for the cardio series are shown in in Figure 

5 a control (Fc) and a relevant (Fr). These are the cumulative sums of the periodograms, 

Fc(^k) = Ej=,--Pc(^i) and FT(Xk) = E/U-^r(A/). We can apply different distance measures 

to determine how these two ISD's differ, that is, how far apart the control and relevant are 

from each other. A common method is to use the maximum vertical difference between the 

two ISD's: 

d{Fe,Fr)=   max   \FC(X) - Fr(X)\ 
X 

S-Plus makes calculation of these terms fairly simple. The spectrum () function calculates 

the smoothed periodogram including the data taper. The supsmuO function was used as a 

the detrender. 
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Figure 9: Phase and Coherency 

In addition to looking for phase relationships between the components series of a multi- 

variate time series, one maybe quite interested in possible correlations between the series at 

different frequencies A. such correlations are captured by a quantity know as the coherency 

function Wjjk(X) for the two series Xj<t and Xk>t. The squared value of the coherency is easily 

represented in terms of the spectral densities fj(X) = /jj(A), fk(X) = fk,k(X), and the cross 

spectral density fj,k(X) for time series Xjyt and Xk,t, namely: 

The coherency function has a very simple interpretation as the correlation between two 

series at frequency A. The way to think of this is in terms of the two complex Fourier series 

representations: 
N 

Xit™ E 5;.»e' 
-iiirXnt 

n=-N 

N 
—t'2irAr,i Xk,ta   E  Bk,ne-i2* 

n=-N 

For the two series Xjtt and Xk,t, Wjtk(\n) is the correlation coefficient between Bj>n and Bktn. 

An example of the estimated coherency and phase between the' cardio and lower respiratory 
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Figure 10: Example of Linearly Separable Data 

channels is given in Figure 9. The coherency has been smoothed to reduce variability. Phase 

and coherency are given calculated using the Splus function spectrumO which adjusts the 

phase to be more continuous by removing all jumps of of greater than pi. 

5     CLASSIFICATION TREES 

Fisher's linear discriminant analysis is one of the most common classically based tools for 

classification. The Fisher discriminant works quite well when two categories are separated 

linearly. An example of this is seen in Figure 10. If however, the data requires a non- 

linearly function for good separation, then Fisher's discriminant will not be very successful 

in partitioning the data. This can be seen in Figure 11. If we look at Figure 12, we see 

how a nonlinear rule can considerably dominate the linear rule. This motivates us to use the 

modern classification tree (CT) to determine deception or non-deception. 

The basic idea behind the classification tree method is that the data is partitioned in such 

a way so that within each partition the data is made as homogeneous as possible with respect 

to the classifying variable. This method of recursive partitioning lends itself naturally to a 

tree representation as shown in Figure 13. First a tree is "grown" and then it is "pruned" 

to a smaller size. Each of the partitions is called a "node" of the tree. 
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Figure 11: Example of Non-linearly Separable Data 

In Figure 12, the.CT method first chooses a partition along the X axis and then divides 

the left half (X < 3.98) into two sections by (Y < 4.05). At this point, each of the regions 

is homogeneous and hence no more splits are necessary. If more than two predictors are 

available, then the tree representation is used since it is not possible to present the splits'in 

higher dimensions. 

The tree representation gives us more detailed information at each of the nodes. Looking 

at Figure 13, the value inside the node is the value held by a majority of the the observations 

at the node. The fraction below counts the number misclassified divided by the total number 

at the node, so at the top (or "root") node, we have 200 observations 100 of which are X's 

(misclassified) and the other 100 are O's. If X is less than 3.98 then we choose the left branch. 

Since 29 of the 129 observations are O's, the algorithm searches to find a split. We discover 

that when Y is less than 4.05 we can get a pure node of all 100 X's and another node of 29's 

Y's. If we had n > 3 variables, then we would be forced to use the tree representation, since 

we could not draw an n dimensional space. 

In order to guide the partitioning toward the homogeneous state, we need to design a 

function that measures the "impurity" at a node. One natural way to construct an impurity 

function is given below. A standard model for binary response data is that of the binomial 
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Figure 12: Classification Tree on Non-linearly Separable Data 

distribution which has the following for -2 log-likelihood for each observation: 

-2 [ylog(p) + (n- y)log(l - p)} 

where p denotes the probability that a subject is deceptive, y is the number of deceptives, and 

n is the total number of observations at the node. Since the p's are unknown, we estimate 

them by Ä at each of the nodes. This -2 log-likelihood term is known as the deviance and 

is a common measure of goodness of fit for a model. In this case, the deviance is minimized 

when p is 0 or 1 and is maximized at 0.5. This function is also concave down with a unique 

global maximum. The CT algorithm searches for splits along a single variable that will 

minimize the impurity as measured by the deviance. The S-Plus tree model is the specific 

implementation of the CT algorithm that we are using (Chambers and Hastie, 1992)[4]. 

Some of the more technical rules that govern the building of CT models are discussed in 

the appendix. 
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Figure 13: Tree for Figure 12 Splits 

6    EXPERIMENTAL METHODS 

Many different classification experiments were performed in an effort to find the best way 

to use the classification tree approach and to deal with the very large dimensional feature 

vectors one might use. Three main experiments based on different choices of feature vectors 

will be reported on below. The first experiment uses only a few GSR features, and the second 

adds some frequency domain features. The third experiment uses all the features reported. 

Our current tree modeling method employs two classification trees. The first tree is built 

by classifying each of a set with 567 charts from all subjects under consideration according 

to deception(D) or no deception (ND). A cross-validation step is used to select the proper 

sized CT model according to generally accepted statistical practices. This final model gives 

fitted scores between 0 and 1 for each of a subject's charts. The fitted score for each subject 

at a single node is the mean value of the subjects' response variable at that node. If there 

are 20 charts at a node and 5 are known D (coded as 0) and the other 15 are ND (coded as 

1), then the fitted score at the node is 15/20 = 0.75. 

To combine the different charts, the mean of these fitted scores is taken. Because these 

charts undergo an averaging step, it is not always the case that a mean score above 0.5 will 

indicate ND or a mean score below 0.5 will indicate D. This leads to building a second tree 

grown from the set of subject mean scores. After undergoing a cross-validation step, we see 
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Figure 14: Chart Tree for Experiment 1, Full Data 
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Table 4: Variables in Final Tree Model-Experiment 1 

Full Data A Data B Data 

Range of GSR(2) Range of GSR(2) Range of GSR(l) 
Variance of GSR(l) Variance of GSR(l) Median Ist diff 0-8 sec GSR(l) 
Median 1st diff 0-8 sec GSR(l) Variance of GSR(3) Mean of 1st diff GSR(2) 
Median 1st diff 0-2 sec GSR(l) Range of GSR(l) Variance of GSR(l) 
Mean of 1st diff GSR(2) 
Mean of 1st diff GSR(l) 
Range of GSR(3) 
Var of GSR(2) 
Median of l3i diff 0-5 sec GSR(l) 

Numbers in parenthesis indicate which of the three differences was chosen. 

Table 5: Misclassification Error Rates-Experiment 2 

Train Full    Train A    Train B 
Test Full 0.151 0.181 0.226 
Test A 0.115 0.123 0.344 
Test B 0.208 0.273 0.039 

Variance of GSR, then on feature 13 calculated for GSR. 

6.2     Experiment 2 

Experiment 2 was motivated by our desire to show the power of spectral features. For this, 

we calculated features 23-31 using cardio and upper respiratory, and then calculated them 

again using upper and lower respiratory. We also included the standard GSR features 1-6 

and the features used in Experiment 1. The first splits in the final tree included feature 

3 for GSR and features 25 and 27 calculated at the fundamental of UR. The results are 

summarized in Tables  5 and   6. 

Notice that the B data does very well on predicting itself, but is very poor at predicting 

the A data. 
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Table 6: Variables in Final Tree Models -Experiment 2 

Full Data A Data B Data 

0.75-0.25 from 2-14 sec GSR(l) 
0.75-0.25 from 2-14 sec GSR(2) 
Spectrum of UR at ffuR *4 
25%ile Ist diff smo GSR(3) 
25%ile 1st diff of smo UR(3) 
0.9-0.1 of 2-14 sec GSR(2) 

0.75-0.25 from 2-14 sec GSR(l) 
Variance of GSR(2) 
0.9-0.1 from 2-14 sec GSR(2) 
0.8-0.2 1st diff 0-4 GSR(3) 

0.9-0.1 of 2-14 sec GSR(l) 
0.8-0.2 1st diff 0-8 sec GSR(l) 
25%ile 1st diff smo LR(1) 
Median 1st diff 0-8 sec GSR(l) 
Fund freq of LR(3) 
Mean of 1st diff GSR(2) 

Smo indicates smoothed, 0.9-0.1, 0.75-0.25 and 0.8-0.2 all indicate that the difference of these 
quantiles were reported. Fund freq is the fundamental frequency of the series measured by the 

frequency at the maximum of the periodogram. 

Table 7: Misclassification Error Rates-Experiment 3 

Train Full    Train A    Train B 
Test Full 0.126 0.121 0.201 
Test A 0.098 0.057 0.311 
Test B 0.169 0.221 0.026 

6.3     Experiment 3 

Experiment 3 combined all the features that we had calculated to date. This included features 

1-10 calculated on all four channels; features 11-16 calculated only for GSR; features 17-21 

calculated on Cardio, UR and LR; feature 22 is calculated only for GSR; and finally features 

23-31 are done the same as in Experiment 2, using the two bivariate series (Cardio,UR) 

and (UR,LR). When the whole dataset is put through the chart tree, the top splits are on 

feature 3 for GSR, feature 27 for UR at UR's fundamental frequency and feature 3 for UR. 

The results are given in Tables   7 and   8. 

Again, the B data does very well on predicting itself but does not do well at predicting 

A. Overall, the 12.6% error rate is fairly good considering the differences between the two 

datasets. 
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Table 8: Variables used in Final Tree Models-Experiment 3 

Full Data A Data B Data 

0.75-0.25 from 2-14 sec GSR(l) 
0.75-0.25 from 2-14 sec GSR(2) 
Spectrum of TJR at ffuR *4 
0.9-0.1 from 2-14 sec GSR(2) 
0.75-0.25 from 2-14 sec of UR(3) 
0.8-0.2 of 1st diff 0-8 sec Cardio(3) 

Fund freq UR(1) 

0.75-0.25 from 2-14 sec GSR(l) 
Variance of GSR(2) 
75%ile of Ist diff of smo UR(3) 
Med Ist dif 8-end of smo GSR(2) 
Phase at fund(UR) 0-8 sec UR(2) 
Minimum Cardio(3) 
0.9-0.1 from 2-14 sec UR(1) 

0.9-0.1 of 2-14 sec GSR(l) 
0.75-0.25 of 2-14 sec of TJR(l) 
0.8-0.2 1st diff 0-8 sec GSR(l) 
Fund freq of smo GSR(l) 
Fund freq of Cardio(2) 
0.8-0.2 of 1st diff 0-4 sec Cardio(2) 
75%ile of Ist diff of smo UR(2) 
25%ile of 1st diff of smo LR(3) 

7    Conclusions 

The first year's work on this project has lead us to look at several issues. First, we think 

that GSR is a very important channel and investigating its features in the frequency domain 

should yield interesting results. On the data organization side, a site visit showed us that 

there is an enormous amount of editing and cleaning that should be done before trying more 

experiments. In many cases movement has distorted the information that is available so that 

the algorithms may have been trained improperly. 

The site visit also validated our trepidation in trusting the results of using the A and 

B datasets as test samples. Their origins are quite different, and hence results may not be 

generalized between the sets. 

Although the cardio channel was not in the first three splits in any of the experiments, it 

was used in all of the final models when the complete feature vector was used (Experiment 3). 

We will try different smoothing techniques on the cardio channel to improve the effectiveness 

of frequency domain analysis. 

We feel quite comfortable with many of our techniques using the classification tree, how- 

ever future work will probably entail comparing different methods which combine the multiple 

charts from a single subject. This has a cost of increasing the dimensionality of the data, 

but we expect work in this area to be effective at error rate reduction. 

Toward the end of the first year, we began to explore two new methods that might 
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explain variability in the data. The first method was the ISD-Integrated Spectral Distance. 

Because GSR is not harmonic in nature, it is very difficult to use features like the fundamental 

frequency to describe it. Instead, we can work with the complete spectral representation and 

measure the spectral distance in GSR between a control and a relevant question. 

Our second new technique is to use a variance component model to perform harmonic 

regression. Harmonic regression works by estimating a set of two or three sine and cosine 

terms with frequencies determined by the fundamental frequency in the periodogram. In 

addition to these fixed terms, a set of random effects will be estimated for each cycle of 

the series which will represent random adjustment terms to the overall fixed terms. By 

examining the series of random effects, we can determine if an event has occurred in one of 

the cycles. The differences in the sequence of estimated random effects can then be used 

as new features to see if any changes took place over the course of a question. The S-Plus 

function varcompO will be used to estimate the random and fixed coefficients. 

8    Appendix on CT Models 

The second part of the cost function for a CT is the penalty term for increasing complexity 

in the model which we will call A. 

When a node has nodes below it, then it is called the parent node and the sub-nodes are 

the children nodes. For each parent node, we calculate the cost function as 

C(nodei) = C {childl) + C(child2) + A. 

If nodei is a terminal node and has no children, then the cost for the node is just the deviance. 

To find the total cost of the tree, we sum of the costs of the terminal node and add A 

times the number of splits in the tree. 

Notice that if A is zero, then we could grow as many "branches" (sub-nodes) as we liked 

without any penalty. Also, if A is very large, then we will not have an incentive to branch and 

so our model will have just one "root" node. In fact, there exists a sequence tree sizes which 

minimize costs that correspond to a sequence of A's. Unfortunately, we cannot estimate the 

best tree size directly since the A's that we get from the whole dataset are for a fixed cost. 
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2     Appendix II 
The year two report prepared by Chris Pounds and Doug Martin. 



Polygraph Reliability: Year Two Report: 

Part 1 

Chris Pounds and Doug Martin 

January 27, 1994 

1     Overview 

This document summarizes the work on the NSA Polygraph project from October 1992 

through June 1993. The reader should be familiar with the first year report of this project 

which gave a basic outline of the polygraph problem and listed some of the feature vectors 

that have been calculated. Unlike the first year report, this report includes many details 

that are not critical to the extraction of good features. Much of the work in the second year 

has been with organizing the manipulation and translation of the data, so some sections may 

be skimmed without great loss for a reader who is concerned about specific features. 

First, we review what work has been done, and then examine the work chronologically 

beginning with October of 1992. October's and November's work dealt with verifying the 

integrity and quality of the charts in the S-PLUS database. In December we used an Ob- 

ject Oriented paradugm to streamline the functions used to build features in the first year. 

January and February were data management months—the previous year's work was con- 

densed and organized on the computing systems. In March, we received MGQT files which 

were converted from Axciton format into S-PLUS format. The March through June work 

involved integrating new charts into the database. Finally, we discuss specific improvements 

to our methods for the Zone charts. 

Because different computer environments are mentioned, we need a convention to refer to 



computer related objects. Computers in the Department of Statistics are referred to in the 

courier font. These machines are paros, grover, and sparta. Files and directories on 

these machines will also be referred to in courier font. S-PLUS is the principal environment 

for analysis of this work, and functions and objects in S-PLUS are referred to as function() 

and object with the sans serif font. UNIX and DOS commands are in italics. Any UNIX 

executable script file will also be in italics. 

2     History 

In March 1992, Chris Pounds traveled to Johns Hopkins University's Applied Physics Lab in 

Columbia, Maryland, to learn about the polygraph project. He returned with floppy disks 

containing the A and B "January Parameters" calculated by APL. These parameters were 

a collection of 95 features calculated for each question on each chart on about 200 subjects. 

The data contained an uneven number of fields which meant that a C program needed to 

be written to process the files. During this period we learned how to handle large files and 

how to use the tree() and associated modeling functions in order to use a tree classifier 

for discriminating between the deceptive and non-deceptive subjects. Work from this early 

period is contained in directory sparta:/home/clbs/ra/abdata and its subdirectories. 

In June of 1992, Chris returned to APL and obtained copies of the charts in the Axciton 

format. These "raw" datafiles were put on floppy disks and compressed using pkzip, a 

compression format that is accessible in both UNIX and DOS. There was also work during 

this period on a program for processing charts into ASCII format given the Axciton data. 

Phil Neal was a big help in finding a C function called swab() for performing byte swapping. 

The program also translated the DOS file format into the UNIX file format particular to the 

SUN workstations that the Department of Statistics uses. The resulting program is called 

dec.c and can be found in paros :/users/clbs/ttemp/dmgt. 

Work during July and August focused on getting the tree models running. Originally all 

standardization of a series with respect to the location and scale parameters was performed 

on a per question basis so that after standardization the time series for all question had 

the same location and scale estimates.  Simple plots in the first year report show that the 



single question standardization is not correct because it washes out differences between the 

C-R (control and relevent) question pairs. Instead, standardization (using the median and 

median absolute deviation) was perfromed on each C-R question pair. This seemed to be 

fairly effective at maintaining the differences between pairs of questions, and also meant 

that all the previous calculations were obsolete. Between September 1 and September 17 

(the day of NSA's visit), we worked on getting as many parameters and models through the 

test procedure as we possibly could. The datasets were collections of six or eight features 

that had been calculated using a single feature extraction function. The Year One Report 

summarizes our findings. 

3     October 1992 work 

3.1 Summary 

We identified charts with movements or other anomalies using two methods: 

1. By displaying each chart using S-PLUS and examining it visually for jumps or severe 

outliers. 

2. By reading each chart's question text and verifying that the question pattern matched 

the pattern that was automatically assigned. 

3.2 Details 

APL and NSA labeled the datasets according to their delivery dates to APL. The "A" dataset 

consisted of 129 subjects received at APL before May of 1992, and the "B" dataset consisted 

of 90 subjects received in May and June of 1992. Within these groupings, the following 

source groups were separated into different directories: FBI, Clayton County, Vermont State 

Police, SLED, DEA, Marion County, Birmingham and Anniston. 

When subject files were received, they are associated with their original Axciton coding 

name which is given by a character string with two leading $'$ symbols followed by a number, 

then a character string of length 5. A suffix of length 3 was also used to identify files contents. 



The suffix has a leading 0, then a number to indicate the chartnumber, i.e., 1, 2, 3/4, or 

5), then a 1 to indicate the Event Marker file, a 2 to indicate the Chart Datafile, or a 3 to 

indicate the Question Text file. Examples of this are $$4r%kto.031 (subject 4r%kto's Event 

Markers for his 3rd chart) $$4ukdf#.012 (subject 4ukdf#'s Chart Data for his 1st chart). 

We had collected information on the A and B datasets earlier in 1992 which was used to 

match the file labels. Some of the charts were improperly labeled, presumably from having 

the exam restarted in the middle of a session or from being mismatched with their responses, 

so the A dataset was trimmed to 122 subjects and the B dataset had only 77 usable subjects. 

Of the 122 A subjects, 76 were deceptive and 46 were non-deceptive. For the 77 B subjects, 

49 were deceptive and 28 were non-deceptive. Deceptive subjects accounted for about 63% 

of the subjects in each group. 

Subset 
A     B 

Deceptive 
Non-deceptive 

49    76 
28    46 

Number of Charts Total # 
of Charts 12       3      4 

8     15     85    14 
3     10     59     5 

349 
220 

A subjects 
B subjects 

When an examiner administers the Zone format exam, there is a fixed ordering of ques- 

tions. On some occasions, the examiner will deviate from this fixed format, usually, by 

making a notation in the Question Text file. This leads to a strange pattern in the event 

markers. Instead of "0 1 2 0" marking the beginning, ending and response of a question, 

the 2 or 1 will be missing, repeated, or transposed in the series. We applied the standard 

ordering to all of the charts and initially only looked at the event markers to make sure 

they matched our automated marking. When the event marker list for a chart did not agree 

with the automated method, we examined the original question texts to see what the dif- 

ficulty was. For further verification, we examined each question text to see if it matched 

the automated question ordering. This was done for nearly 600 charts, a simple but lengthy 

task. 

Another part of our examination of data quality was the visual examination of each chart. 

We discovered that some of the charts contained anomalous artifacts such as large jumps 



in all four channels or a substantial fall-off of the GSR channel. The examiners informed 

us that these are caused by subject movement during the exam and therefore these exams 

might be difficult to score algorithmically. We decided to keep these charts in the database 

for two reasons. First, we could not be sure that they were actual movements. There was 

a chance that some of them could have been genuine features that we could use in our 

analysis. Second, by leaving them in and identifying them, we could determine the impact 

of charts movements on the algorithm by performing a sensitivity analysis. This required us 

to repeat our model building process without the questionable charts and then investigate 

the differences between the two modeling processes. 

The following is a listing of the 75 charts that are suspected of containing gross artifacts. 

z4r5eo.l z4rkto.l z4u5kji.2 z4umjli.3 z4xkuqu.l 
z4xkuqu.2 z4xyakf.2 z6efai.l z6trwi.l z79nbu0.1 
z7b0olx.l z7cmxc.l z7cmxc.2 z4pbmai.2 z4z0fa3.1 
z4zl5v.3 z6e5kb9.1 z6j06ta.l z61dyhl.l z61dyhl.2 
z61dyhl.3 z5sdwx.l z5sdwx.2 zöogei.l z6ogei.2 
z6onkb.2 z5y4ui3.1 z5y4ui3.3 z6xju.3 z7ow8bi.2 
z7ow8bi.3 z7plt4i.3 z7zegu0.1 z7ysr3.1 z7ysr3.2 
z7ysr3.3 z7x44m.l z831sp3.3 z85o2i3.4 z8ayvz.l 
z8fdy3f.2 z8k78pc.2 z81yox.l z86slr.l z86slr.4 
z86slr.5 z87zh4s.2 z888rmb.4 z8al2gx.l z8al2gx.3 

z8al2gx.4 z8aw85r.l z8aw85r.2 z8jxfxa.l z8jxfxa.2 
z8jxfxa.3 z81ayx.l z81ayx.4 z81anz9.1 zSmfxdl.l 
z84jaer.l z84jaer.2 z84jaer.3 z87k6u.l z8cuijr.2 
z8qy8dl.l z81fqc.l z81fqc.2 z81fqc.3 z8nm9tr.l 
z8nm9tr.2 z8oekyc.2 z8slf0.1 z8slf0.2 z8sg7nc.2 

Of the 75 badcharts identified, 44 are deceptive charts ( 59%) and 31 are non-deceptive charts. 

It seems reasonable that deceptive people would move more often than non-deceptives simply 

because they will try to "beat the test." 

4    December 1992 Work 

4.1     Summary 

Functions were rewritten to take advantage of changes in S-PLUS. These changes make it 

easier to add new features to the feature vector and also take up less space. Functions for 



building the features and manipulating the data in the tree method stage were updated. 

4.2     Details 

S-PLUS is not designed to manipulate extremely large data objects ( > 4 Mb ) like a 

database language can, but S-PLUS is quite efficient in working with small to modest size 

files ( < 0.5 Mb ). With this in mind, we have arranged the database so that each chart is 

stored as an individual file. Functions we wrote can access the charts either one chart at a 

time or one subject at a time. 

Originally, we built functions which could be written quickly and with only a rough 

skeleton. At the end of the first year's work, we examined the functions and exploited the 

object oriented paradigm to set up an environment which allowed for efficient and modular 

code designs. 

In the first version of what we call "feature extraction", the function npc() (new prepare 

chart) was called with the following arguments: 

npc(subjectname, columns, function, nargs) 

subjectname: name of the subject being examined 
columns: which channels of the chart are to be extracted (GSR=1, Cardio=2, UR=3, LR=4) 
function: which feature extraction function set would be used 
nargs: number of features that function calculates 

Within npc() the structure looked like this: 

begin function 
calculate the number of charts for the subject 
create storage for each of the features that the feature extraction 

function produces 
begin loop over each of the subject's charts: 

call feature extraction function for appropriate channel 

store the question labels and features 

end loop 

begin loop over charts 
begin loop over features 

calculate differences between control and relevants 
if only two CR pairs, calculate third as average of first two 

end loop over features 
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end loop over charts 
return matrix of differences 
end function 

The feature extraction functions (FEF) had the structure: 

begin function 
find the question marker file 

figure out which rows of the chart contain the control and relevant questions 
( e.g., 500-1000,1200-1900, 2000-2600) 

pair up the control and relevant questions 
begin loop over each CR pair 

find subset of chart that contains CR pair 

standardize CR pair together 

calculate features for control 

calculate features for relevant 
store features 

end loop 
return features for each c and each r 
end function 

In our end of the year examination of these functions we saw two limitations that could 

be overcome by using object oriented programming. The first negative was that the code 

for determining the rows containing control and relevant questions was duplicated in each 

FEF. The use of a single function would eliminate this repetition. In fact the FEF's could 

be separated into two classes according to the number of channels they processed—many of 

the features are calculated on one channel at a time, but the multi-spectral features were 

done on two channels at a time. This lead to the construction two different "generic'" object 

oriented extraction functions called caller.uni() and caller.biv(). These two functions solved 

the repetition problem. Specific calculation functions were then written to correspond to 

features that were calculated in previous work. 

The second problem was that you needed to know the number of features that an FEF 

was going to calculate in order to call the function from the subject level npc () function. 

In order to solve this problem, a "nargs" attribute was added to each FEF. This attribute 

is used to tell functions using the FEF the number of features that the FEF creates. In 

addition to "nargs", each FEF was given a "class" of either "uni" (for univariate) or "biv" 

(for bivariate), allowing functions using the FEF the ability to determine which of the "caller" 

functions to use. 



The class construct allows one to use a generic function call which will take the calculation 

function as an argument. The generic function caller() will evaluate the class attribute of 

the calculation function and will then use the class as an extension to call the appropriate 

caller function. For example, the class attribute of the calculation function called call.gsl() 

(which calculates 4 first difference features plus the range and the variance) is "uni," so 

caller(call.gsl) will evaluate as caller.uni(call.gsl). In addition, caller.uni() will automatically 

extract the "nargs" attribute of call.gsl() (which is "6") to allocate a matrix of the proper 

dimension to store the results. 

The final product of this endeavor is that new features can be added by only having to 

write a calculation function with a couple of simple attributes. Similar work on plot functions 

is much more difficult because of the complication of setting global plotting parameters such 

as the range of the data. 

Once the feature vector is created it must be bound together in an S-PLUS matrix-like 

data object called a "data frame." In the data frame each row contains the features (com- 

bined from several FEF's) for a single chart. Also included in the data frame is information 

regarding whether or not the subject was deceptive. The tree classifier can then be applied 

to each chart, and a prediction was obtained from each chart regarding whether or not the 

subject was deceptive. These predictions can then be combined in a separate tree procedure 

using the chart level predictors, and the final subject based (as opposed to chart based) 

predictions regarding deception can be obtained. 

Prior to December, we had needed to create new functions and data objects for each new 

feature vector since we could not depend on the same charts being in every feature vector. 

In December, we discovered that the functions we had been creating were quite similar, so 

we went to work on making them more interchangable (generic). 

The key step in making interchangable functions is to make all the arguments depend 

either on global parameters that do not change or on features that can be directly extracted 

from the working data frame. When revising old functions, we would change only a few 

of the statements in the function. While the old function would extract information from 

the data frame's global name, for example, the new functions used arguments to obtain this 



information. 

Functions are listed at the end of this report. 

5    January and February 1993 work 

5.1 Summary 

We reorganized the file systems to allow for better access of files—old files that did not contain 

pertinent information were removed and important files were grouped and organized. 

5.2 Details 

Physical scientists are taught to keep a journal of what occurs in their study environment. 

As a statisticians, we can use the files that we have created as a record of our progress. Over 

the course of 18 months, the file structures can become very complex. When an analysis 

method is repeated or modified, the previous record may not be essential and is overwritten 

or simply deleted. This action may be transparent to the analyst. However, someone else 

who examines the files may not see these hidden steps or even perceive the order in which 

things occurred. 

January of 1993 was spent cleaning and organizing previous work into a format that 

could be deciphered by someone other than the analyst. Instead of describing which files 

were moved where and how files were deleted, this section will summarize the file structures 

used in the course of this project. 

Currently, work on the 1992-1993 cycle is being performed in 

paros:/users/clbs/ttemp/newwork 

while 

grover 

is where the post September 1, 1992 work for tree models is performed. The files on paros 

are either charts or post-September 1 work on the charts. 
Filesystems involved: 

paros:/users/clbs/ttemp 



grover:/home8/clbs/dale 
grover:/home8/clbs/ra/poly2 

sparta:/home/clbs/ra 

The directories on these file systems, and their contents are: 

• paros:/users/clbs/ttemp/dmgt/ 
This contains files used in processing charts in June of 1992 

• paros:/users/clbs/ttemp/one—three/ and paros:/users/clbs/ttemp/five-twelve/ 
These directories contain .Data directories with first year charts in S-PLUS format. 
The .Data directories also contain the Question Marker files and two lists of the charts 
in the nfilesxx and gfsxx files (xx refers to the number of the directory). The each of 
the main directories contains a file "questfile" containing the Question Text files, and 
a .zip file containing the raw .0x1 and .0x3 files. 

• paros:/users/clbs/ttemp/work/: 
These files are mostly just the run/batch files, where the functions that sift through 
the databases to extract the features live. 

• 

• 

• 

• 

• 

paros:/users/clbs/ttemp/work/csd/ 
Cumulative spectral distribution work is in here 

paros:/users/clbs/ttemp/work/fdgfswork/ 
Last run at frequency domain-September 10 

paros:/users/clbs/ttemp/work/functs/ 
Description of functions and some old functions 

paros:/users/clbs/ttemp/work/gsrdswork/ 
Runs of GSR frequency domain series-September 13 

paros:/users/clbs/ttemp/work/n2gfswork/ 
Batch files used for creating n2gfs database (pff functions). These functions are mostly 
APL-like features. 

• paros:/users/clbs/ttemp/work/vc/ 
Harmonic regression work 

• paros:/users/clbs/ttemp/work/.Data 
This contains a collection of functions called and plotting functions. It also contains 
four of the feature vector collections that were made after September 1. These are the 
ngfs, mmgfs, n2gfs and fdgfs files which correspond to some of the directories above. 

• paros:/users/clbs/ttemp/newwork/: 
This directory contains work done in the second year of funding of the Polygraph 
Reliability project on the A and B datasets. Improved and object oriented functions 
can be found here. 
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• 

• 

grover:/home8/clbs/dale/fdgfsw/ 
Frequency domain work on Sept 14, 1992. V data 105 parameters 

grover:/home8/clbs/dale/fullgfsw/ 

work Sept 17, 1992 on full dataset (276 X, Y and V parameters) 

grover:/home8/clbs/dale/gsgfsw/ 

work on Sept 15; adds X data to V data 

• grover:/home8/clbs/dale/pdgfsw/ 
work Sept 11, V data. 

• grover:/home8/clbs/dale/rptwork/ 

Year One report with psfiles containing plots. Also contains files with plotting instruc- 
tions. 

• grover:/home8/clbs/dale/tables/ 
Tables explaining what function or calculation was used to create a given variable. 
Includes some files back to early August.   Data is summarized in tty.tables and in 
rept.tex in rptwork. 

• grover:/home8/clbs/ra/poly2 
This is a directory where current work is being handled. The subdirectory monthly/ 
contains monthly reports and this summary. The reports.doug/ directory contains 
reports sent to Doug while he was in Taos. The mgqt/ directory has some initial work 
on the MGQT names and outcomes, [these have been copied to sparta:/home/clbs as 
of 6/11/93] 

• sparta:/home/clbs/ra/poly 
These are older files used on the A and B datasets with APL parameters and which were 
mostly exercises in treeQ modeling. The directory prog contains zipfiles of programs 
used to process Axciton files, (programs were revised in February 1993). The talk/ 
subdirectory contains files and plots used for APL talk by clbs on 6/17/1992. The talk 
concered tree based models and methodology. 

• sparta:/home/clbs/ra/rpts 
This directory contains the workplans that were submitted to funding agencies in 
January of 1993. A rough timeline of the projected work is included in the files and 
separately. 

• sparta:/home/clbs/ra/oldst/wstd/ 
These directories contain data management files that were used in early Summer of 
1992 at the beginning of my RA work with feature extraction. (This was before Septem- 
ber 1.) We used question by question standardization which turned out to be inferior 
to later methods. Some of the datasets were deleted because they were just tak- 
ing up space. They could be recalculated using the new feature extraction functions 
and amending them to standardize question by question (rather than by pairs or vs. 
strongest response). 
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• sparta:/home/clbs/ra/oldstd/gfs.masterwork/ 
Contains a lot of old work-much of which is useless but saved anyway 

• sparta:/home/clbs/ra/oldstd/zzip/ 
Contains very early work (July) compressed using the zip format. 

6     March-June 1993 work on MGQT charts 

6.1 Summary 

MGQT files were processed and the decryption routine was shared with other NSA/PERSEREC 

contractors. A procedure for adding new charts to the database was written. 

6.2 Details 

NSA notified us that other contractors would be needing some assistance on the polygraph 

project and that we should share our knowledge with them. Dr. John Angus from the 

Claremont Graduate School contacted us in late February about working with the polygraph 

data. In March, Dr. Ben Knapp at San Jose State University contacted us about reading 

charts as well. Both were supplied with instructions on how to use our decompression routines 

and are at the stage where they can process charts from compressed form into ASCII. The 

interaction with these researchers was lengthy, involving 87kb of correspondence. 

NSA sent a set of MGQT data in March so that a classification tool could be devised for 

this type of chart. Along with 12 disks of charts, we also received copies of information on 

the cases and how they were scored by the examiners. 

The MGQT format is considerably different from the zone test in that the question or- 

dering is very different. The "standard" MGQT format is in table 1. 

The DOS MGQT floppies were restored on a PC into a single file using the DOS 5.0 

restore command. This file was transferred over to the UNIX machines and unzipped using 

the UNIX program zip, leaving us with 970 files containing 43,653,259 bytes of information. 

Because the file names contained reserved UNIX characters such as $, % and #, the reserved 
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Table 1: MGQT Question Order 

1. Irrelevant 6. Control 

2. Irrelevant 7. Irrelevant 

3. Relevant 8. Relevant 

4. Irrelevant 9. Relevant 

5. Relevant 10. Control 

characters in the files were deleted by renaming the files using the mv command. The files 

were then moved to directories according to the first character of the file name to make 

the data management easier. These directories were called: four, five, six, seven, 

eight, nine, aset and bset and were used throughout the analysis. Figure 1 summarizes 

the overall process. 

The next step in file processing was to create the ASCII formatted or "processed" files 

using the nf program, (nf is based upon code that NSA gave us in March of 1992.) A slight 

modification of nf was needed because an inversion flag had changed causing the program 

to exit prematurely. The inversion flag is part of the header information in the *.0?1 file 

which tells the decompression algorithm to read the values as either "positive" or "negative'' 

unsigned short (16 bit) integers. The program expected the inversion flag to be either 0 or 

1, but instead it was 126, causing an unexpected exit from the routine. 

The nf program first reads the subjectname.O(chartnumber)l file which contains the 

following information regarding the chart: 

1. Length of Chart in seconds units 
2 Number of Channels 

3. Sample rate 
4. Number of Questions 
5. Compression flags for each channel 
6. Event markers and their locations 

To process the charts, the UNIX script file decc and nf ware first moved into each directory 

(using a UNIX batch file datamgt). The decc file uses the UNIX foreach command to rename 

the target file for the nf program. The name consists of a 'z' followed by the subject name 
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Axciton 
File 

Processing 
Notes 

Event Marker File 
$$xxxxxx.Oxl 

-contains the length of the 
chart, the number of 
channels, and the position 
of the Event Markers in 
units of l/30th of a second 

Becomes the 5th column 
of ASCII file 
0 = start asking a question 
1 = done asking a question 
2 = subject response to 

question 
9 = No Event Marker 
(column is mostly 9's) 

Chart Data File 
$$xxxxxx.0x2 

-contains the digitized 
series values, formatted 
according to flags in the 
Event Marker File 

Becomes lst-4th columns 
of ASCII file 
Column 1-GSR 
Column 2-Cardio 
Column 3-Upper Resp 
Column 4-Lower Resp 

Question Text File 
$$xxxxxx.0x3 

contains the script of 
questionss or a shorthand 
script of questions. 

Files are pooled into UNIX 
files by directory. Later, 
these files will be exam- 
ined for deviations from 
the standard ordering of 
questions 

UNIX 
File 

ASCII File Format (with column labels) 
File Row GSR Cardio UR   LR EvMark 

1 1983 1931 1482 1083 9 
2 1983 1922 1483 1084 9 
3 1983 1913 1483 1084 9 
4 1983 1906 1483 1085 9 
5 1983 1902 1483 1085 9 

This ASCII file is read into S-PLUS to become the zxxxxxx.x chart data file, according to 
the labeling from the original files. The 5th column labeled EvMark comes from the CKs 
in the Event Marker file. A 0 marks the beginning of a new question. The position of the 
0's in the file is summarized in the Question Marker file in S-PLUS, where row names are 
assigned to match the order in the question text file. For example in the Question Marker 
file below, 1681 indicates that in row 1681 or 1681/30=56 seconds into the exam, the 
examiner began to ask a Sacrifice Relevant question. 

S-PLUS 
File 

Chart Data File 
zxxxxxx.x 

1 19831931 14821083 9 
2 1983192214831084 9 
3 1983191314831084 9 
4 1983190614831084 9 
5 1983190214831085 9 

Question Marker 
File 

zxxxxxx.xq 
TB   361    960 
N 961 

SR1681 
S 2281 

C1 2911 

1680 
2280 
2910 
3510 

Figure 1: File Types 
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with 'O(chartnumber)' as the suffix, decc then invokes nf with subject. 0 (chart numb er )1 and 

the targetfile as arguments. The targetfile contains the digitized values from the Axciton in 

four columns, with a fifth column containing the event markers (0,1,2) separated by 9's. 

After decrypting the files, the original charts are compressed with another batch file 

datamgt2 which also sets up .Data subdirectories in each of the chart directories. This 

compression batch step is followed by an S-PLUS batch step datamgt3 which reads in the 

charts to S-PLUS and compresses the ASCII charts using the commands in the file readbat. 

In addition to reading in the charts, the S-PLUS batch job also creates question marker 

files (subject.?q) in S-PLUS. Question marker files list the times of the beginning and end 

of questions and are used throughout the extraction process. 

The above steps were performed on sparta and consumed over 250Mb of disk space. 

The final step in processing the raw files is to extract the question files. This is done by 

copying all the *.0?3 files into one file so that they may be examined later for deviations 

from the standard ordering of questions. After this is done, the original datafiles can be 

removed to tape for storage. 

The database tools allow for easy access to each chart. To do this, we create a main 

database directory called paros :/users/clbs/mgqt/work and us .FirstQ functions in S- 

Plus to automatically link the main database directory .Data to the directories containing 

the processed charts four, five, ... , bset. Chart label names contained in files nf4 . 

nf5 ,..., are combined as nf in the work directory. Next, the chart description forms sent 

from NSA are examined and we record the examiner's judgement regarding deception for 

each subject. 

To insure that the questions were associated with the proper labels by the automatic 

question allocation routines, we needed to verify the ordering of the questions. There are two 

ways that this is done. The simplest way is to examine the question text files and match the 

questions that the examiner recorded to the labels given by the automatic routines. A second 

verification step requires looking at the event marker files for each subject and checking to 

see that a "2" was pressed during the times indicated by the labels. For example, the first 

automatic label is "TB" for "The test is about to begin." If a 2 was pressed during the time 
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indicated by the label, then an error has occured since there should be no response to that 

statement. These two steps using the question texts and the event markers also help identify- 

any stim tests that were sent to us. 

A list of exams that were not MGQT tests or for which it was not possible to identify 

the questions was obtained. These exams are excluded from the feature building. Of 302 

charts, 264 are usable leaving 88 of the 96 original subjects. A log of these deletions was 

kept on paros:/users/clbs/mgqt/work/changelog.questions and was forwarded to San 

Jose and Claremont. 

The last step before calculating features for the MGQT charts was a brief rewriting of 

the caller() and the new.subj.call() functions so that the different format of questions would 

be properly standardized. After a few tests, the functions were found to be acceptable and 

feature extraction could begin. 

7    March-June 1993 work on Zone methods 

7.1 Summary 

Improvements on the Zone test feature extraction algorithms were made concurrently with 

the MGQT work. Two of the goals in the Second Year proposal were to improve the method 

used to detrend the series and to more accurately estimate the fundamental frequency for 

the cardio channel. The Integrated Spectral Density has been added to the set of features 

that may be calculated using calier(). 

7.2 Details 

In the first year, we used supersmoother, supsmu() in S-PLUS, to remove trend from the 

data. Supersmoother is a variable span smoother that smooths different segments of a given 

series with possibly different smoothing spans. A section that is smooth to begin with would 

have a wide span, while a section that is more variable would get a narrower span. The 

primary advantage to using supersmoother is its speed; supersmoother is much faster than 

our other smoothing choices. 
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This adaptive bandwidth used by supersmoother meant that we could not fix the smooth- 

ing span, making it difficult to predict the results of applying supersmoother to a new series. 

We also noticed that supersmoother was oversmoothing some of the respiratory series, taking 

out parts of the trend that we wanted preserved. 

We produced several plots using different smmothing span's (found in paros : /users/clbs/ttemp/n< 

and visual inspection lead us to believe that a fixed span of 0.6 was most appropriate for 

smoothing. A smaller span removed too much of the cyclic component from the respiratory 

channels, and a larger span does not filter out enough trend in the cardio channel. 

A major benefit of the spectral analysis is exact estimation of the fundamental cardio 

frequency. See the First Year Report for details. 

After changing the smoother, we saw more "pollution" of the lower frequencies of the 

spectrum—more of the low frequency trend from the respiratory channels would be left in 

the series since the bandwidth of the smoother was relatively high. In addition, we perceived 

that we were accepting fundamental cardio frequencies which were too low. We expected that 

these frequencies were actually respiratory frequencies, and that the interaction of respiration 

with heart volume was leading to our estimating cardio fundamental frequencies which were 

too low (since they were actually respiratory frequencies). 

To see how well (or poorly) we could estimate the fundamental cardio frequency, the 

following experiment was tried: First, we estimated the cardio fundmental frequency using 

lower bounds for the cardio channels. Then we estimated these fundamental frequencies, but 

we did not restrict fundamental frequencies to be greater than our lower bounds. For the 

cardio channel, we saw that all cardio fundamental frequencies were above our lower bound. 

Without the bound some of our estimates for the fundamental cardio frequency fell below 

this bound and were actually respiratory frequencies. 

Specifically, we declare the fundamental for cardio series as the greatest peak at a fre- 

quency about 0.0295. For a respiratory channel, we declare the greatest peak about 0.00325 

as our fundamental. 

These two methodological improvements did not translate into significant reduction in 

error rates for the Zone tests.   We believe that the poor quality of many of the A and B 

17 



charts has limited our ability to improve our rates. Initial examination of the MGQT charts 

seems to indicate that most of these charts are free from artifacts. This knowledge, together 

with the careful screening of the questions on the MGQT charts, should give us a good basis 

for scoring this new dataset. 

Appendix: Functions from December 

"caller"<- 
function(object,   ...) 
UseMethodO'caller") 

"caller.uni"<- 
function(FUN, chartname, col = 2, ...) 

{ 
#MGQT version 

qnm <- paste(chartname, "q", sep = "") # 

# get the question marker file 
qv <- get (qnm) # 

# how many questions are there? 
ddim <- dim(qv)[1] 
cvec <- rep(0, ddim)   # 

# what are the labels for the questions? 
dn <- dimnames(qv)[[1]] # 

# which were the Control questions 
for(i in l:ddim) { 

if(dn[i]   == "Cl"   I   dn[i]   == "C2") 
cvec[i]   <- 1 

> 
rvec <- rep(0,  ddim) # 

# which were the relevant questions 
for(i in l:ddim) { 

if(dn[i]   == "Rl"   I   dn[i]   == "R2"   I   dn[i]   == "R3" 
I   dn[i]   == "R4")  rvec[i]   <-  1 

} 
pvec <- cvec + rvec    # 

# How many relevants 
#(this  is different  from Zone!!!) 

psum <-  sum(rvec) 
pcount  <- c(l:ddim) 
pc <- pcount[pvec == 1] 
re  <- pcount[rvec == 1] 
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cc <- pcount [cvec == 1]   # 
# first two Rel's get paired with 1st  control,   2nd two with 2nd control 

cc <- c(rep(cc[l],   2),  rep(cc[2],   2)) 
xo <- get(chartname)[,   col] 
dn2 <-  dn[c(l:(psum * 2))] # 

# this stores the question labels 

for(i in l:psum) { 
dn2[(2 * i - 1)]   <- dn[cc[i]] 
dn2[(2 *  i)]   <- dn[rc[i]] 

} 
# 
# storage for the results... 
# actually,   this  could be done with 
# retur_eval(FUN,(xo,c(cc[l],rc[1]),qv.col,...)) 
# retur_rbind(retur,eval(FUN,(xo,c(cc[i],  

retur <- matrix(0, psum * 2, attr(FUN, "nargs")) 
for(i in l:psum) { 

retur[(2 * i - 1):(2 * i),  ] <- eval(FUN(xo, 
c(cc[i], rc[i]), qv, col, ...)) 

> 
return(data.frame(length = retur, lab = dn2)) 

} 

caller.biv<- 
function(FUN, chartname, col = c(2, 3), ...) 

{ 
qnm <- paste(chartname,   "q",   sep =  "") 
qv <- get(qnm) 
ddim <- dim(qv)[1] 
cvec  <- rep(0,   ddim) 
dn <- dimnames(qv)[[1]] 
for(i  in  l:ddim)   { 

if(dn[i]   == "Cl"   |   dn[i]   ==  "C2") 
cvec[i]   <-  1 

} 
rvec <- rep(0, ddim) 
for(i in l:ddim) { 

ifCdnCi]   ==  "Rl"   |   dn[i]   ==  "R2"   |   dn[i]   ==  "R3"   |   dn[i]   == 
"R4") 
rvec[i]   <-  1 

> 
pvec <- cvec + rvec 
psum <- sum(rvec) 
pcount <- c(l:ddim) 
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pc <- pcount[pvec == 1] 
re <- pcount[rvec == 1] 
cc <- pcount[cvec == 1] 
cc <- c(rep(cc[l],   2),  rep(cc[2],   2)) 
xo <- get(chartname)[, col] 

dn2 <- dn[c(l:(psum * 2))] 

for(i in l:psum) { 
dn2[(2 * i -  1)]   <- dn[cc[i]] 
dn2[(2 * i)]   <- dn[rc[i]] 

} 
retur <- matrix(0,   psum * 2,   attr(FUN,   "nargs")) 
for(i  in l:psum)  { 

retur[(2 * i -  1):(2 * i),    ]   <- eval(FUN(xo,   ccc[i], 
rc[i]),   qv,   col,   ...)) 

} 
return(data.frame(length = retur,   lab = dn2)) 

call.gsl  <- function(datai,   quests,   qvm,   ...) 
{ 

cl <- quests[1] 
rl <- quests [2]   # 

# Right here  is where the real work will come  in 
# 

data <- mst(c(datai[qvm[cl,   l]:(qvm[cl,   2])], 
datai[qvm[rl,   1]:(qvm[rl,2])])) 

cdata <- data[c(l:(qvm[cl,   2]   - qvm[cl,   1]))] 
tempc <- diff(cdata,   1,   1) 
teml  <- median(tempc[l:60]) 
tem2 <- median(tempc[1:150]) 
tem3  <- median(tempc[1:240]) 
tem4 <- mean(tempc[l:(length(tempc))]) 
tem5  <- max(cdata)   - min(cdata) 
tem6 <- var(cdata) 
rdata <- data[ - c(l:(qvm[cl,   2]   - qvm[cl,   1]))] 
tempr <- diff(rdata,   1,   1) 
tem21 <- median(tempr[l:60]) 
tem22 <- median(tempr[1:150]) 

tem23 <- median(tempr[1:240]) 
tem24 <- mean(tempr[1:(length(tempr))]) 

tem25 <- max(rdata) - min(rdata) 

tem26 <- var(rdata) 
return(rbind(c(teml, tem2, tem3, tem4, tem5, tem6), c(tem21, tem22, 

tem23, tem24, tem25, tem26))) 
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} 
attr(,   "class"): 
[1]   "uni" 
attr(,   "nargs"): 
[1]   6 

gnct  <- function(treet,   df,   df.tr) 
{ 
# treet is a tree, df is a data.frame and df.tr is the associated 

# set of true outcomes for the df 

# This is called after finding the best tree of charts (not subjects) 

# gnct(fndl.tl.ndl.ndl.tr) 

# calls nclassO 
prel <- predict.tree(treet,   df)[,   2] 
pre.df  <- data.frame(df.tr,   t(nclass(prel,   df))) 
names(pre.df)[1]   <-  c("out") 
return(pre.df) 

> 

nclass <- function(fit, df) 

{ 
# This function combines data from the chart level to the subject level 

# INPUTS:  fit—fitted values from gnct call —fits from chart tree 

# df —df used to create chart tree 

# OUTPUTS: returns matrix with median, mean and extreme value 
# calculation for each subject. 

person <- unique(df$short) 
k <- length(person) 
fitmean <- function(j, fit, lev.las, las2) 

•C 
dat  <- fit[las2 == lev.lasCj]] 
tempm <- median(dat) 
tempm2 <- mean(dat) 
tempm3 <- ifelse(abs(l - max(dat)) < abs(min(dat)),max(dat), 

min(dat)) 
return(c(tempm, tempm2, tempm3)) 

} 
men <- matrix(0, k, 3) 
men <- apply(as.matrix(c(l:k)), 1, fitmean, fit, person,df$short) 
dimnames(men) <- list(c("median", "mean", "ext"), person) 
return(men) 
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gnch <- function(predv, subs, ds, dsla) 

{ 
#INPUTS:  predv=predicted values from subject tree, 

# subs=number to check which subset is worked on 3=whole data 
# l=a data,0=bdata 

# ds=dataset used to grow subject tre 

# dsla=indicator of a's in subject dataset 
#gnch(predict(tmlf,newdata=ndl.ct)[,2],3,ndl.et,ndl.ad) 
#gnch(predict(tmlf,newdata=ndl.ct[ndl.ad==l,])[,2],1,ndl.ct,ndl.ad) 
#gnch(predict(tmlf,newdata=ndl.ct[ndl.ad==0,])[,2],0,ndl.et,ndl.ad) 
#output 3 ratios of error rates in full,a and b data sets. 

ddim <- length(predv) 

res.out <- predv * 0 
res.out <- round(predv, 0) 
if(subs < 2) { 

res.v2 <- sum(abs(as.numeric(ds[dsla == subs, 1]) - 1- res.out)) 

} 
else { 

res.v2 <- sum(abs(as.numeric(ds[, 1]) - 1 - res.out)) 

} 
ret <- paste(res.v2, "/", length(predv), " = ", 

round(res.v2/length(predv), 3)) 
return(ret) 

} 
"new.subj.call"<- 
function(chartname, colnum, FUN, ...) 

■C 

#MGQT version 
nargs <- attr(FUN, "nargs")    # 

# Here I start off by cheating—I need to know how many 
# charts to expect from a subject, so I look it up in master.list 
# 

chl <- lengthdeh <- master. list$chartnames [master. list$short == 
chartname])    # 

# 

# Set up storage for each of the features 
for(k in 1:nargs) { 

assign(paste("ressld", k,  , sep = ""), c(0, 0)) 

} 
# 

# get the right storage mode for resslc 
resslc <- c("l") 
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cht <- 0      # 
# loop over the number of charts from the same subject 

for(i in l:chl) { 
chartname <- lch[i]    # 

# calculate feature using Feature extraction function FUN 
resul <- eval(caller(FUN, chartname, colnum, ...))     # 

# for the first one, we just set things up 
# 
# this next part is just a set of gymnastics in Splus to get it 
# to allocate space in a "dynamic" manner 
# the ressld-fl, ,nargs} are just vectors that paste more 
# stuff into, the assignQ call might be cleaned up, but I do not 
# see a simple way to do it.... 

# perhaps you could just stack a matrix together by column or rows.... 

# (I designed this for a different version of S and this was all that 

# I could get to work...) 

if(i == 1) { 
for(k in l:nargs) { 

assign(paste("ressld", k,  , sep = ""), resul[,k]) 

} 
resslc <- as.character(resul$lab) 
cht <- rep(i, length(resslc)) 

} 
else { 

for(k in l:nargs) { 

assign(paste("ressld", k,  , sep = ""), c(get( 
pasteC'ressld", k,  , sep = "")), result, k])) 

} 
resslc <- c(resslc, as.character(resul$lab)) 
cht <- c(cht, rep(i, length(resul$length.1))) 

} 
> 

# okay, now standardize 
resn <- rep(0,   length(resslc))    # 

# set  up dummy variables  to  code questions 
for(i  in  1:length(resslc)) { 

resn[i] <- resn[i] + ifelse(resslc[i] == "Cl", 1, 0) 
resn[i] <- resn[i] + ifelse(resslc [i] == "C2", 1, 0) 
resnCi] <- resn[i] + ifelse(resslc[i] == "Rl", 3, 0) 
resn[i] <- resn[i] + ifelse(resslc[i] == "R2", 4, 0) 
resn[i] <- resn[i] + ifelse(resslc [i] == "R3", 5, 0) 
resnCi] <- resn[i] + ifelse(resslc [i] == "R4", 6, 0) 

} 
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# matrix of 4 differences 
outt <- matrix(0, chl, nargs * 4) 

ucht <- unique(cht) 
ncht <- length(ucht)   # 

# 
# 
# This is one way to "standardize" the subject scores, you can 

# probably think of many others— 
# if you just reported the scores for each question (say 6 
# questions for each chart/for each feature) they you could manipulate 
# the scores directly and figure out another way of "standardizing" without 

# having to recalculate features 
for(i in l:ncht) { 

for(k in 1:nargs) { 
workk <- get(paste("ressld", k, sep = "")) 

diffs <- rep(0, 4) 
nquest.cht <- length(cht[cht == ucht[i] & resn > 2]) 

for(l in 1:nquest.cht) { 
avg <- mean(workk [resn < 2 & cht == ucht[i]]) 
diffs [1] <- workk[resn == (1 + 2) & cht == ucht[i]] - avg 

} 
if(nquest.cht < 3) 

diffs [3]   <- 0 
if(nquest.cht  < 4) 

diffs [4]   <- 0 
outt[i,   (4 * k - 3)]   <- diffs [1] 
outt[i,   (4 * k - 2)]   <- diffs [2] 
outt[i,   (4 * k -  1)]   <- diffs [3] 
outt[i,   (4 * k)]   <- diffs[4] 

} 
} 
return(outt) 

} 
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5    Appendix III 
The following gives a list of the charts removed from the MGQT data with a brief description 
of the reason these charts were removed. The names used here may be slightly different from 
the names used in the Axciton files because of UNIX naming conventions. 

1. z51de36.3 - remove from listing-stim, no event markers 

2. z80d.3q - throw out, cannot tell what questions are 

3. z84jhc.2 - stim, remove 

4. z8djgl. 1,2,3 - ZONE, remove from MGQT listings 

5. z8qybjo.l - remove, no idea what questions are 

6. z8zsqcr.l,2,3,4 - cannot tell what the questions are-remove 

7. z92wqwk.l - stim, remove 

8. z9iooxo.l,.3 - stim,remove 

9. z911ic3.1,.2,.3 - ZONE, remove from MGQT listings 

10. z9su7.1,.2 - stim,remove 

11. z9w0b9f.2 - stim,remove 

12. za6uif.2 - stim, do not use 

13. zarfjf.1,.2,.3 - remove, cannot tell what the questions are 

14. zawa8j.2 - stim, do not use 

15. zbcma7p.3 - remove-not enough questions (no C2) 

16. zbk3ff.l,.2,.3,.4 - ZONE, remove from MGQT listings 

17. zawa8j.l - examiner called the charts Inconclusive 

18. zawa8j.2 - examiner called the charts Inconclusive 

19. zawa8j.3 - examiner called the charts Inconclusive 

20. z9szc.l - examiner called the charts Inconclusive: 

21. z9szc.2 - examiner called the charts Inconclusive: 

22. z9szc.3 - examiner called the charts Inconclusive: 

23. z9sqdf9.1 - examiner called the charts Inconclusive: 
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24. z9sqdf9.2 - examiner called the charts Inconclusive: 

25. z9sqdf9.3 - examiner called the charts Inconclusive: 

26. zc8egp0.1 - wrong test (REMOVE) 

27. zc8egp0.2 - wrong test (REMOVE) 

28. zc8egp0.3 - wrong test (REMOVE) 

29. zcdpkp0.2 - stim (REMOVE) 

30. zciuzlu.2 - stim, flat GSR, unusable (REMOVE) 

31. zcm5y56.2 - flat GSR, stim test, (REMOVE) 

32. z7oxm60.1 - order of questions not determined (REMOVE) 

33. z7oxm60.2 - order of questions not determined (REMOVE) 

34. z7oxm60.3 - order of questions not determined (REMOVE) 

35. z7r51p9.1 - order of questions not determined (REMOVE) 

36. z7r51p9.2 - movement, order of questions not determined (REMOVE) 

37. z7r51p9.3 - order of questions not determined (REMOVE) 

38. z7rh0ro.l - order of questions not determined (REMOVE) 

39. z7rh0ro.2 - order of questions not determined (REMOVE) 

40. z7rh0ro.3 - order of questions not determined (REMOVE) 

41. z80d.2 - movement in "I", bad question order (REMOVE) 

42. z8fgmvi.l - strange GSR - bad event markers, order is tb, il, i2, rl, i3, r2, cl, i4. i4, 
r3, r4, c2 (REMOVE) 

43. z8nb6u.l - questions (REMOVE) 

44. z8nb6u.2 - questions (REMOVE) 

45. z8nb6u.3 - questions (REMOVE) 

46. z8qmts.l - strange GSR (REMOVE) 

47. z8qmts.3 - order is impossible to determine (REMOVE) 

48. z8ys26.1 - No questions (REMOVE) 

49. z8ys26.2 - No questions (REMOVE) 



50. z8ys26.3 - No questions (REMOVE) 

51. z92wqwk.2 - No questions (REMOVE) 

52. z92wqwk.3 - No questions (REiMOVE) 

53. z92wqwk.4 - movement in R2, no questions (REMOVE) 

54. z9iooxo.5 - order is tb, il, i2, r4, cl, i3, rl, c2, r2, cl, r3, r3, c2, i4, question R3 asked 
twice, questions hard to determine (REMOVE) 

55. za3hirx.3 - order is unknown (REMOVE) 

56. zbq4shi.l - already in data - two 2's in a row (REMOVE) 

57. zbq4shi.2 - already in data - spike in audio 3 indicates remove (REMOVE) 

58. zbq4shi.3 - already in data - order is TB, 14, II, R2, Cl, Rl, C2, R4, Cl, R3, C2, XX, 
spikes (REMOVE) 

59. zbr6R60.1 - already in data - spikes in I questions - order is TB, il, i2, Rl, i3, Cl, i4, 
i5, R3, R4, C2, XX (REMOVE) 

60. zbr6R60.2 - already in data - very low GSR in II (REMOVE) 

61. zbr6R60.3 - already in data - order is TB, i4, il, R4, Cl, i2, Rl, C2, R2, i4, Cl, R3, 
C2, XX (REMOVE) 

62. zbtu99c.l - already in data - spike in il (REMOVE) 

63. zbtu99c.2 - already in data - stim (REMOVE) 

64. zbtu99c.3 - already in data (REMOVE) 

65. zbtu99c.4 - already in data - order is TB, i4, il, r4, cl, i2, R3, c2, r2, cl, r3, r4, xx 
(REMOVE) 

66. zcDygsl.l - order is tb, il, i2, cl, rl, i3, r2, c2, r3, i4, r4, c3, xx - too many controls 
(REMOVE) 

67. zcDygsl.2 - order is tb, il, i2, cl, rl, i3, r2, c2, r3, i4, r4, c3, xx - too many controls - 
(REMOVE) 

68. zcDygsl.3 - order is tb, i4, i5, c3, r4, i3, rl, cl, r3, i4, r2, c2, xx - too many controls - 
(REMOVE) 

69. zcbf5z6.1 - spike in il - not enough questions (REMOVE) 

70. zcg6j24.3 - order is tb, i4, il, i2, cl, i2, rl, c2, r2, cl, r3, c2, xx - no r4 (REMOVE) 

71. zcjlv4r.l - order is tb, il, i2, rl, cl, r2, c2, r3, c3, i4, xx too man controls (REMOVE) 



72. zcjlv4r.2 - order is tb, il, i2, rl, cl, r2, c2, r3, c3, i4, xx too many controls (REMOVE) 

73. zcjlv4r.3 - order is tb, il, i2, rl, cl, r2, c2, r3, c3, i4, xx too many controls (REMOVE) 

74. zcjlv4r.4 - order is tb, il, i2, rl, cl, r2, c2, r3, c3, i4, xx too many controls (REMOVE) 

75. zcr3aye.2 - not enough questions (REMOVE) 

76. zcre6zy.2 - bad event markers - (REMOVE) 

77. zcre6zy.4 - bad event markers - (REMOVE) 

78. zctccdR.3 - bad event markers - (REMOVE) 

79. zcwqzju.l - order is tb, il, i2, cl, rl, i3, r2, c2, r3, i4, r4, c3, i5, xx - too manv controls 
(REMOVE) 

80. zcwqzju.2 - order is tb, il, i2, cl, rl, i3, r2, c2, r3, i4, r4, c3, i5, xx - too many controls 
(REMOVE) 

81. zcwqzju.3 - chart not complete (REMOVE) 

82. zcwqzju.4 - order is wrong - too many controls (REMOVE) 

83. zcyl5kk.3 - bad event markers - (REMOVE) 

84. zcyx3sP.l - No question file - (REMOVE) 

85. zcyx3sP.3 - No question file - (REMOVE) 

86. zdl85v6.2 - too few questions - (REMOVE) 

87. zd4x9vo.l - too many controls - (REMOVE) 

88. zd4x9vo.2 - too many controls - (REMOVE) 

89. zd4x9vo.3 - too many controls - (REMOVE) 

90. zd5Rdf4.2 - too few questions - (REMOVE) 

91. zd6riRo.2 - bad GSR - too few questions - (REMOVE) 

92. zd6riRo.5 - too few questions - (REMOVE) 

93. zd6riRo.6 - too few questions - (REMOVE) 

94. zdb879c.l - jump in r2 cardio - order is tb, il, i2, cl, rl, i3, r2, c2, i4, xx - not enough 
relevants - (REMOVE) 

95. zdb879c.2 - wrong order - not enough relevants - (REMOVE) 

96. zdb879c.3 - wrong order - not enough relevants - (REMOVE) 
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97. zdbzpoR.2 - bad event markers - (REMOVE) 

98. zdbzpoR.4 - bad event markers - (REMOVE) 



6    Appendix IV 

Listed here with a brief description is a list of the feature sets and features used in this study. 
Also given is a listing of the channels each feature set was computed on. These channels 
are: 1 - galvanic skin response, 2 - cardiograph, 3 - upper pneumograph, and 4 - lower 

pneumograph. 

• GS1 - Channels 1, 2, and 4. 

1. median60 - median of the first 60 lagged values; 

2. medianlöO - median of the first 150 lagged values; 

3. median240 - median of the first 240 lagged values; 

4. mean - mean of the standardized data; 

5. range - range of the standardized data; and 

6. variance - variance of the standardized data. 

• Gl - Channels 1, 2, and 4. 

1. med240 - the median of the first 240 observations; 

2. med241 - the median of the differences from 241 to the minimum of 420 or the 
end of the series; 

3. sp25 - the 25-th percentile for the smoothed, differenced data; 

4. sp75 - the 75-th percentile for the smoothed differenced data; 

5. MAXAMP - the amplitude of the maximum spectrum value greater than the 
lowest allowed frequency in the standardized data minus its smooth; and 

6. MAXFREQ - the frequency at which the greatest amplitude occurs. 

• G2 - Channels 1, 2, and 4. 

1. minimum - the minimum of the standardized data; 

2. maximum - the maximum of the standardized data; 

3. midrange - the midrange (0.75 - 0.25) of the elements from the 60-th to the 
minimum of the 420-th or the end of the questions data; 

4. mid.9.1 - the midrange (0.9 - 0.1) of the elements from the 60-th to the minimum 
of the 420-th or the end of the questions data; 

5. mid.8.2 - the midrange ((0.8-0.2) of the first 240 data points; and 

6. midi.8.2 - the midrange (0.8-0.2) of the first 120 data points. 

• G2A - Channels 1,2, and 4, smoothed data. 

1. minimum - the minimum of the standardized data; 



2. maximum - the maximum of the standardized data; 

3. midrange - the midrange (0.75 - 0.25) of the elements from the 60-th to the 
minimum of the 420-th or the end of the questions data; 

4. mid.9.1 - the midrange (0.9 - 0.1) of the elements from the 60-th to the minimum 
of the 420-th or the end of the questions data; 

5. mid.8.2 - the midrange ((0.8-0.2) of the first 240 data points; and 

6. midi.8.2 - the midrange (0.8-0.2) of the first 120 data points. 

• G3 - Channels (2,4) together. 

1. phasel - the phase of the first channel at the fundamental frequency 

2. coherl - the coherency of the first channel at its fundamental frequency: 

3. phase2 - the phase of the second channel at the fundamental frequency; 

4. coher2 - the coherency of the second channel at the fundamental frequency; 

5. phaserl - the phase of the first channel at the fundamental frequency, reduced 
serie; 

6. coherrl - the coherency of the first channel at its fundamental frequency, reduced 
series; 

7. phaser2 - the phase of the second channel at the fundamental frequency, reduced 
series; and, 

8. coherr2 - the coherency of the second channel at the fundamental frequency 
reduced series. 

The reduced series is the first 240 observations (8 seconds) after the beginning of the 
question. 

• G4 - Channels 2 and 4. 

1. fundfreq - the fundamental frequency; 

• G5 - Channels 1, 2, and 4. 

1. mxabsm - The maximum absolute difference between the control and the relevant 
cumulative spectrums, standardized data; 

2. smabsm - the sum of the absolute differences between the control and relevant 
cumulative spectrums, standardized data; 

3. smsqsm - the sum of the squared differences between the control and relevant 
cumulative spectrums, standardized data; 

4. mxabrw - The maximum absolute difference between the control and the relevant 
cumulative spectrums, smooth-removed data; 
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5. smabrw - the sum of the absolute differences between the control and relevant 
cumulative spectrums, smooth-removed data; and 

6. smsqrm - the sum of the squared differences between the control and relevant 
cumulative spectrums, smooth-removed data. 

• FD2 - Channels (2, 4) together. 

1. fundl - the fundamental frequency, first channel; 

2. fund2 - the fundamental frequency, second channel; 

3. ampl - the amplitude of the spectrum for channel 1 at the fundamental frequency 
for channel 2; 

4. amp2al - the amplitude of the spectrum for channel 2 for the fundamental fre- 
quency for channel 1; 

5. amplhl - the amplitude of the spectrum for channel 1 at the first harmonic for 
channel 1; 

6. amplh2 - the amplitude of the spectrum for channel 1 at the second harmonic 
for channel 1; 

7. amplh3 - the amplitude of the spectrum for channel 1 at the third harmonic for 
channel 1; 

8. amp2al - the amplitude of the spectrum for channel 2 for the fundamental fre- 
quency for channel 2; 

9. amp2hl - the amplitude of the spectrum for channel 2 at the first harmonic for 
channel 2; 

10. amp2h2 - the amplitude of the spectrum for channel 2 at the second harmonic 
for channel 2; 

11. amp2h3 - the amplitude of the spectrum for channel 2 at the third harmonic for 
channel 2; 

12. coh2 - the coherency of the spectrum at the fundamental frequency for channel 

2; 

13. cohl - the coherency of the spectrum at the fundamental frequency for channel 

i; 

14. cohlhl - the coherency of the spectrum at the first harmonic for channel 1; 

15. cohlh2 - the coherency of the spectrum at the second harmonic for channel 1 

16. cohlh3 - the coherency of the spectrum at the third harmonic for channel 1; 



7    Appendix V 

The following pages contain the help files for many of the S-Plus functions written for the 
polygraph project at the University of Washington. 



axcitron.conv   1 S-PLUS Functions axcitron.conv 

axcitron.conv Converts an ASCII Axcitron File to an S File axcitron.conv 

DESCRIPTION 

The axcitron polygraph data comes in binary files which must be interpreted to produce usable 
data. For each Axcitron chart, routine axcitron.conv() produces, in the working directory, an S-Plus 
chart matrix, and a question ordering file used by later routines. 

USAGE 
axcitron.conv(chartname) 

REQUIRED ARGUMENTS 

chartname The axcitron name of the file.  This is base.Ocl, where base is the six character base name, and c is 
the chart number. 

VALUE 
Returns nothing. 

SIDE EFFECTS 

Creates two S-Plus file in frame 1. The file zbase.c contains the chart data, and the file zbase cq 
contains the question ordering data (where the questions begin, and what they contain. If the ques- 
tion ordering file is has less than four questions, a message is printed. 

EXAMPLES 
axcitron.conv("cIwjbf. 031") 



bxPk   l S-PLUS Functions 

bxpIt    Function to provide comparative boxplots for D and ND groups 

DESCRIPTION 

£.°S zszzzz \zr^ bxp"°produces a pl01 wlth fc **« »f*»<*«~ 
USAGE 

bxplt(df, outcome) 

REQUIRED ARGUMENTS 

df A dataframe containing the outcome measures to be plotted 

0UtC°me sAervSn.With ^ "^ " ** ^ °' ** ^ **"*'«*<*** the classification of each ob- 

VALUE 

No values are returned. 

EXAMPLES 
bxplt(df, outcome) 



call.fd2   1 

call.fd2 

S-PLUS Functions 
1   call.fd2 

Statistics Related to the Fundamental Frequency 

DESCRIPTION 

USAGE 

Cofflp„ES *e todM freque„cy ffld jB hamonics/ampliMes for each amL 

call.fd2(data, quests, qmarker, channel, ...) 

REQUIRED ARGUMENTS 

data The vector of channel data, 

quests The questions in data for which features are to be extracted 
qmarker The marker file for this chart extracted, 
channel The channel that represented by data. 

OPTIONAL ARGUMENTS 

Optional argument to the spec function, used to calculate the spectral analysis. 

VALUE 

EXAMPLES 

is first standardized by concatenating Z cZ7^JEST« f,      T™ ^^  ^ *** 
median and dividing by the mean fbsolu ^ devktion   NeS sTJT" T ^ "^^ ** 
order to obtain a smooth for the data. Statistics aT™™ ?„   ?T  S USed mth a ^ of °-6 in 
the smooth-removed standardizedfcSjTLC< T*?5 ^    " Standardized *>*, and then on 
first channel; 2 - the fundament fr^en^^"Z? fV " ^ ^^^ freW> 
channel 1 at the fundamental frequency foTcSnnel 2 7 *    "   r ampÜtUde °f ^ Spectrum f°r 

nel 2 for the fundamental frequency for crlneM    5   t"       f^ °f the Spectmn for Khan- 
at the first harmonic for channel if 6    SZZLL^*"*^* ^ ^ *eCttUm fa Channel ! 

harmonic for channel 1; 7 - the amplitude «JS^ c     5    , SPCCtmm f°r Channel ! * ^ second 
channel 1; 8 - the amplitude «fClÄS?^ ' * "" ^ ^^ te 

nel 2; 9 - the ampütude of the sr^ctL^ch« IIffi   f ^^ fre<« ** chan- 
amplitude of the spectrum for channel 2 a^rheT™ 7, f ham0niC for channel 2= «> - the 
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mental frequency for channel 1;   14    tte^htencv of T " ^ ** 8pKtnm * ** funda' 
nel 1; 15 - the coherency of the spectrum TZZ^  5 ?   SPeCtmm * the &st hamonic f°r chan- 

of the spectrum at the thld hlonlTc^eH ° ** ^ U '" " ^ ^^ 

Use caller (or caller.uni) to call call.fd2. 
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Call,gl         Simple Statistics on Smoothed Data call.gl 

DESCRIPTION 

Computes some simple staüsücs on the smoothed differenced data. 

USAGE 

call.gl(data, quests, qmarker, channel, ...) 

REQUIRED ARGUMENTS 
data The vector of channel data, 

quests The questions in data for which features are to be extracted. 
qmarker The marker file for this chart, 
channel The channel that represented by data. 

OPTIONAL ARGUMENTS 

... Optional argument to the spec function, used to calculate the spectral analysis. 

VALUE 

EXAMPLES 

A 2 by^6 array containing the extracted features. Row one contains features for the control ques- 
tion, and row two contains features for the relevant question. The data is first standardized by con- 
catenating the control and relevant data together and then subtracting the median and dividing by 
the mean absolute deviation. Next supsmu is used with a span of 0.6 in order to obtain a smooth 
for the data. The smooth is then differenced, and statistics are computed on the differenced data 
Statisdcs computed are: 1 - the median of the first 240 observations; 2 - the median of the 
differences from 241 to the minimum of 420 or the end of the series; 3 - the 25-th percentile for 
the smoothed, differenced data; 4 - the 75-th percentile for the smoothed differenced data; 5 - the 
amplitude of the maximum spectrum value greater than the lowest allowed frequency in the stand- 
ardized data minus its smooth; and 6 - the frequency at which the greatest amplitude occurs. 

Use caller (or caller.uni) to call call.gl. 
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"to* 

ca,,-82 Simple Channel Staüstics on Standardized Data call.g2 

DESCRIPTION 

Computes some simple range statistics on standardized, and on differenced, data. 

USAGE 

call.g2(data, quests, qmarker, channel, ...) 

REQUIRED ARGUMENTS 
data A vector of channel data. 

quests The questions in data for which features are to be extracted 
qmarker The marker file for this chart, 
channel The channel that represented by data. 

OPTIONAL ARGUMENTS 
... Not used. 

VALUE 

L IL       7 g J e eXtraCted featoeS- R0W 0ne COntains featoe* for the control ques- 
clrT 7 C°?tamS featUfeS for the rdeVant ^UeSti0n- ™e ** » fct standardized by 2- 
2 n't" f IT? ^ rdeVant *■* t0gether ^ &en SubtractinS *e -edran and davidL by fl» mean absolute devmtion.- For some features, a lag 1 difference is also computed  Sties 

S JmiLg^lrolsfoft T^? ^ 2 " ^ -*— °f Äe^SSS nt ,, ^.nudran^ (0J5 - °-25) of ^ dements from the 60-th to the minimum of the 420-th or 
the end of me questions data; 4 - the midrange (0.9 - 0.1) of the elements from me 60-lto the 
minimum of the 420-th or the end of the questions data; 5 - the midrange ((0 8-0 2) of me firs^O 
data points; and 6 -the midrange (0.8-0.2) of the first 120 data points 

EXAMPLES 

Use caller (or caller.imi) to call call.g2. 
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call.g3 Phase statistics for two channels call.g3 

DESCRIPTION 

Computes spectral phase statistics for two channels in the data. 

USAGE 

call.g3(data, quests, qmarker, channels, ...) 

REQUIRED ARGUMENTS 
data A nrow by two matrix of channel data, 

quests The questions in data for which features are to be extracted 
qmarker The marker file for this chart, 
channels The channels that represented by data. 

OPTIONAL ARGUMENTS 
... Optional arguments for the spec routine. 

VALUE 

A 2 by 8 array containing the extracted features. Row one contains features for the control ques- 
tion, and row two contains features for the relevant question.  The data is first standardized by con- 
catenating the control and relevant data together and then subtracting the median and dividing by 
üie mean absolute deviation.  Next supsmu is used with a span of 0.6 in order to obtain a smooth 
for the data.  Statistics are computed on the difference of the standardized and the smoothed data 
Computed statistics are:   1 - the phase of the first channel at the fundamental frequency- 2 - the 
coherency of the first channel at its fundamental frequency; 3 - the phase of the second channel at 
the fundamental frequency; 4 - the coherency of the second channel at the fundamental frequency 
51 - foe phase of the first channel at the fundamental frequency, reduced serie; 6 - the coherency of 
the first channe at its fundamental frequency, reduced series; 7 - the phase of the second channel at 
die fundamental frequency, reduced series; and, 8 - the coherency of the second channel at the fun- 
damental frequency, reduced.series.   The reduced series is the first 240 observations (4 second) 
after the beginning of the question. 

EXAMPLES 

Use caller (or caller.uni) to call call.gs3. 
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Cal,-S4 Computes the Fundamental Frequency call.g4 

DESCRIPTION 

Given a channel of data, this feature extraction function computes the fundamental frequency. 

USAGE 

call.g4(data, quests, qmarker, channel, ...) 

REQUIRED ARGUMENTS 

"move the above line to just above the first optional argument 
data The vector of channel data 

quests The questions in data for which features are to be extracted. 
qmarker The marker file for this chart, 
channel The channel that represented by data. 

OPTIONAL ARGUMENTS 
... Optional arguments for the specO function. 

VALUE 

A 2 by 2 array containing the extracted features. Row one contains features for the control ques- 
tion, and row two contains features for the relevant question. The data is first standardized by con- 
catenating the control and relevant data together and then subtracting the median and dividing by 
the mean absolute deviation. Next supsmu is used with a span of 0.6 in order to obtain a smooth 
for the data The smooth is then differenced, and statistics are computed on the differenced data 
Statistics computed are: 1 - the fundamental frequency; and 2 -- 0. For the relevant question, this 
becomes: 1 - 0; and 2 - fundamental frequency. 

SIDE EFFECTS 

EXAMPLES 

• Use caller (or caller.uni) to call call.g4. 
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call.g5 Kullback-Liebler Distance Features call.gS 

DESCRIPTION 

Computes difference measures based upon the spectrums of the control and the relevant questions. 

USAGE 
call.g5(data, quests, qmarker, channel, ...) 

REQUIRED ARGUMENTS 
data The vector of channel data 

quests The questions in data for which features are to be extracted. 
qmarker The marker file for this chart. 
channel The channel that represented by data. 

OPTIONAL ARGUMENTS 
... Optional argument to the spec function, used to calculate the spectral analysis. 

VALUE 
A 2 by 6 array containing the extracted features. Row one contains features for the control question 
(always a vector of zeros), and row two contains features for the relevant question. The data is 
first standardized by concatenating the control and relevant data together and then subtracting the 
median and dividing by the mean absolute deviation. Next supsmu is used with a span of 0.6 in 
order to obtain a smooth for the data. Statistics are computed on the standardized data, and then on 
the smooth-removed standardized data. Statistics computed are: 1 - The maximum absolute 
difference between the control and the relevant cumulative spectrums, standardized data; 2 - the 
sum of the absolute differences between the control and relevant cumulative spectrums, standard- 
ized data; 3 - the sum of the squared differences between the control and relevant cumulative spec- 
trums, standardized data; 4 - The maximum absolute difference between the control and the 
relevant cumulative spectrums, smooth-removed data; 5 - the sum of the absolute differences 
between the control and relevant cumulative spectrums, smooth-removed data; and 6 - the sum of 
the squared differences between the control and relevant cumulative spectrums, smooth-removed 
data. 

EXAMPLES 
Use caller (or caller.uni) to call call.g5. 
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call.gsl Simple Descriptive Features call.gsl 

DESCRIPTION    . 

Simple descriptive features for lag 1, standardized data. 

USAGE 
call.gsl (data, quests, qmarker, ...) 

REQUIRED ARGUMENTS 

"move the above line to just above the first optional argument 
data The data for the channel for which features are to be extracted, 

quests Two questions, a control, and the relevant, for which features are desired, 
qmarker The marker data, obtained from the "q" file. 

OPTIONAL ARGUMENTS 
... Not yet used. 

VALUE 

A two by six array containing the extracted features. Row one contains the data from the control 
and row two contains the data for the relevant question. The data is first standardized by con- 
catenating data from the two questions. The resulting vector is standardized by subrtacting the 
median and dividing by the mean absolute deviation, and then a lag 1 difference is taken. Statistic 
computed are: 1 - median of the first 60 lagged values; 2 - median of the first 150 lagged values; 3 
- median of the first 240 lagged values; 4 - mean of the standardized data; 5 - range of the stand- 
ardized data; and 6 - variance of the standardized data. 

EXAMPLES 
Use caller (or caller.uni) to call call.gsl. 
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caller Calls the appropriate feature extraction function. caller 

DESCRIPTION 
This function is generic (see Methods);   method  functions can   be   written   to  handle   specific 
classes  of data.  Classes which already have methods for this  function  in- elude: uni, biv 

USAGE 
caIler(FUN, ...) 

REQUIRED ARGUMENTS 
FUN The feature extraction function. 

OPTIONAL ARGUMENTS 
... methods may have additional arguments. 

VALUE 
Varies from method to method. 

SEE ALSO 
caller.uni, caller.biv, caller.pl2 

EXAMPLES 
caller(caILgsl, master.list[l,l]) 
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caller.biv Calls Feature Extraction Functions for a Two Channels caller.biv 

DESCRIPTION 
Calls a single channel feature extraction function with data for two channels. 

USAGE 
calIer.biv(FUN, chartname, channels=(2, 3),...) 

REQUIRED ARGUMENTS 
FUN The feature extraction function, 

chartname A character string giving the name of the chart for which features are to be computed. 

OPTIONAL ARGUMENTS 
channels A vector giving the two channels for which features are to be computed. Channels are 1 - galvanic 

skin response; 2 - cardio; 3 - upper respiratory; and 4 - lower respiratory.  Exactly two channels at 
a time must be specified. 

... Optional arguments passed to the feature extraction function. 

VALUE 
A data.frame with rows equal to twice the number of relevant questions and columns equal to the 
number of features the feature extraction function computes. The rows alternate between control 
and then a paired relevant question. 

SEE ALSO 
new.subj.call 

EXAMPLES 
caller.biv(call.gsl, master.Iist[I,l]) 



caller.pl2   1 S-PLUS Funcüons 1   caller.pl2 

cailer.piZ Displays the Polygraph Charts caller.pI2 

DESCRIPTION 

USAGE 
calIer.pl2(FUN, chartname, channels=c(l, 2, 4), ...) 

REQUIRED ARGUMENTS 
FUN The feature extraction function, 

chartname A character string giving the name of the chart for which features are to be computed, 
channels A vector giving the channels to be displayed  These are  1 - galvanic skin response; 2 - cardio; 3 

- upper respiratory; and 4 - lower respiratory. 

OPTIONAL ARGUMENTS 
... Not currendy used. 

VALUE 
zero. 

SIDE EFFECTS 
Displays a plot of the channels. 

EXAMPLES 
caller.pl2(pl3, chartname) 
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cailer.uni Calls Feature Extraction Functions for a Single Channel caller.uni 

DESCRIPTION 
Calls a single channel feature extraction function. 

USAGE 
caüer.uni(FUN, chartname, channel=2,.-) 

REQUIRED ARGUMENTS 
FUN The feature extraction function, 

chartname A character string giving the name of the chart for which features are to be computed. 

OPTIONAL ARGUMENTS 
channel A scalar giving the channel for which features are to be computed. These are 1 - galvanic skin 

response; 2 - cardio; 3 - upper respiratory; and 4 - lower respiratory.  Only one channel at a time 
may be specified. 

.- Optional arguments passed to the feature extraction function. 

VALUE 
A dataJrame with rows equal to twice the number of relevant questions and columns equal to the 
number of features the feature extraction function computes. The rows alternate between control 
and then a paired relevant question. 

SEE ALSO 
new.subj.call 

EXAMPLES 
caller.uni(call.gsl, master.Iist(l,l]) 
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chartplot Plots the Polygraph Channels on the Active Device chartplot 

DESCRIPTION 
Plots the polygraph channels on the active graphical device. 

USAGE 
chartplot(chartname, co!s=c(l, 2, 4), rows=c(0), qs=c(0), ...) 

REQUIRED ARGUMENTS 
chartname A character string containing the name of the char to plot. 

OPTIONAL ARGUMENTS 
cols The polygraph channels to plot 

rows An interger vector of length two containing the row numbers of the rows of polygraph data to plot 
If a single zero is entered, all rows are plotted. 

qs The question numbers in the poluygraph chart to plot.   Currently this does not seem to work 
correcüy. 

... Plotting parameters to be passed to the high level plotting routines. 

VALUE 
Nothing is returned. 

SIDE EFFECTS 
A single plot is produced. 

EXAMPLES 
chartplot("zcr0g9i. 1") 
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check.chart Checks the PolyGraph Chart Questions and plots check.chart 

DESCRIPTION 
Displays three channels on a polygraph chart for a single individual on an existing graphical dev- 
ice,, and then uses check.questions to display the questions (which must be available in a file 
base.0c3q, where base is the 6 character base name with no prepended z, and c is the chart number. 

USAGE 
check.chart(chartname) 

REQUIRED ARGUMENTS 
chartname The name of the chart to check.   This has format zbase.c, where base is the six character base 

name, and c is the chart number. 

VALUE 
The questions and other chart information are displayed in the S-Plus command window, and a plot 
of the chart channels is produced.  No value is returned. 

SEE ALSO 
check.questions 

EXAMPLES 
check.chart("zc9xmo. 1") 
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check.Iabels Checks chart labels check.labels 

DESCRIPTION 
Checks chart question labels to make sure that each of the four relevent questions is asked only 
once, that each of the two control questions is asked at least once, and that the other question la- 
bels are known. 

USAGE 
check.labels(chartname) 

REQUIRED ARGUMENTS 
chartname A character string giving the chart name. 

VALUE 
Nothing is returned.  Bad charts are listed. 

EXAMPLES 
check.labels(as.character(master.list[20,l])) 
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check.questions Displays the Questions used in a Polygraph Chart check.questions 

DESCRIPTION 
Displays the questions used in a polygraph chart, and gives the question ordering. 

USAGE 
check.questions(chartname) 

REQUIRED ARGUMENTS 
chartname A character string giving the chart name using format zbase.c, where base is the base chart name, 

and c is the chart number. 

VALUE 
A list containing the following components is returned, 

questions A data.frame contains the question type, and the question.  Unfortunately, question types vary from 
chart to chart, 

codes A vector of codes in the 
dnames A vector of character strings assigned to each question.  These are hard coded, and thus the actual 

questions asked can be quite different from the characterization of question types given in dnames. 
Codes used in dnames are: "TB" - the test is about to begin; "il", "i2", ... - irrelevent question 1, 2, 
...; "Cl", "C2", ... - control question 1, 2, ...; "Rl", "R2", ... - relevent question 1, 2, ... 

DETAILS 

SEE ALSO 

EXAMPLES 

Function check.questions() is used to display the questions for a polygraph chart It assumes that 
the working directory contains these questions in a file with name base.0c3q, where base is the 6 
character base name with no prepended z, and c is the chart number. The main use of 
check.questions() is in the function checkxhartO, which also gives a graphical display of the poly- 
graph chart 

check, chart 

check.chart("zc9xmo. 1") 



compute.features   1 S-PLUS Functions 1   compute.features 

compute.features Computes a feature vector for a single chart compute.features 

DESCRIPTION 
Returns a labeled row vector containing features for a single chart. 

USAGE 
compute.features(chartname, channels, FUN, ...) 

REQUIRED ARGUMENTS 
chartname A character string containing the name of the chart for which features are desired. 

channel A channel (or channels) for which features are desired.  Only one channel (or set of two channels) 
at a time may be specified. 

FUN The feature extraction function. 

OPTIONAL ARGUMENTS 
... Arguments used by the feature extraction function. 

VALUE 
A labelled row vector containing the extracted features. 

SEE ALSO 
new.subj.call 

EXAMPLES 
compute.features(master.Iist[l,l], c(2), call.gsl) 
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do.tree Function to Analyze Features do.tree 

DESCRIPTION 
Creates a tree, fits it, cross-validates error rates, chooses the best tree, and then adds selected vari- 
ables to a data.frameO- 

USAGE 
do.tree(x, merge=T, print.it=T, add.data=NULL, COMPARE=get.compare, 

subset=NULL) 

REQUIRED ARGUMENTS 
"move the above line to just above the first optional argument 

x Matrix containing the features for which an analysis is desired. 

OPTIONAL ARGUMENTS 
merge If merge is true, a subject wise analysis is performed.  Otherwise, the analysis is by charts. 

print.it If true, printing is performed, 
add.data If not null, data is added to the indicated dataframe. 

COMPARE The function to use when comparing the relevant and control questions. 
subset a logical vector giving the subset of data to use for this analysis.  The remaining data is used in es- 

timating the probabilities of misclassification. 

VALUE 
Nothing is returned. 

SIDE EFFECTS 
A files with the analysis results is created and printed, and a plot of the results is made (but only if 
print.it=T).    If add.data is not null, the selected features are added to dataframe add.data 

DETAILS 

SEE ALSO 
do.summary.tree 

EXAMPLES 
do.tree(gl.df) 
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mst Functions to Standardize a Vector mst 

DESCRIPTION 
Used to standardize a channel using robust methods. 

USAGE 
mst(x) 

REQUIRED ARGUMENTS 
x The vector to standardize. 

VALUE 
A standardized vector. 

DETAILS 
Standardization consists of subtracting the median and dividing by the mean absolute deviation. 

EXAMPLES 
mst(x) 
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post.chart Postscript Plots of Polygraph Charts post.chart 

DESCRIPTION 
Produces a postscript plot of at most two polygraph charts. 

USAGE 
post.chart(chartname, chartname2=NULL) 

REQUIRED ARGUMENTS 
chartname A character string giving the name of the first polygraph chart to plot. 

OPTIONAL ARGUMENTS 
chartname2 If given, a character string giving the name of the second polygraph chart to plot. 

VALUE 
No value is returned. 

SIDE EFFECTS 
Produces a plot on the postscript device.  Invokes, and then turns off, the postscript driver. 

SEEALSO 
chartplot 

EXAMPLES 
post.chart("zav53p6.3" "zawa38x. 1") 
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questm Finds Polygraph Examiner Codes questm 

DESCRIPTION 
For a polygraph chart, examines the code channel, and determines which channels are different 
from 9.  Returns a matrix containing the chart locations of zero codes. 

USAGE 
questm(chart) 

REQUIRED ARGUMENTS 
chart The chart object for which the channel code matrix is desired. 

VALUE 
A two column matrix containing the locations of the beginning and ending time marks for each 
question asked. 

DETAILS 
The polygraph examiner marks each question event with an event marker. These are: 0 - start ask- 
ing the question; 1 - finish asking the question; and 2 - the subject responds to the question. A 
nine indicates that there was no event The routine questmO finds the beginning and ending event 
markers for each question in the polygraph test. 

EXAMPLES 
questm("z51qep3.1") 
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spec Estimate Spectrum spec 

DESCRIPTION 
Estimates the spectrum of a time series. 

USAGE 
spec(x, method="pgram", plot=T, spans=l, pad=0, taper=0.1, detrend=T, demean=F, n.freq=n2, frequency=l 

REQUIRED ARGUMENTS 
x a univariate or multivariate time series, or a vector, or a matrix with a univariate series per column. 

Missing values are allowed only at the ends. 

OPTIONAL ARGUMENTS 
method If method="pgram", a periodogram is used with spec.pgram. If method="ar", estimates based upon 

autoregression are used, 
plot If plot=T, a plot of the spectral density is produced. 

spans a sequence of lengths of modified Daniell smoothers to run over the raw periodogram.  Use spans = 
1, the default, for the raw periodogram.  A modified Daniell smoother has all values equal except 
for the 2 end values which are half the size of the others.  The values should be odd integers. 

pad fraction of the length of x that is to be padded: (pad*length(x)} zeros are.added to the end of the 
series before computing the periodogram. 

taper fraction of each end of the time series that is to be tapered.    A split cosine taper is applied to 
{taper*length(x)} points at each end of series. This must take values between 0 and 0.5. 

detrend if TRUE, remove a least squares line from each component of the series before computing periodo- 
gram. 

demean if TRUE, remove the mean of each series before computing the periodogram (detrend also removes 
the mean), 

n.freq the number of frequencies between 0 and the Nyquist frequency (=frequency/2 cycles per unit time) 
at which to compute the spectrum.  The default value is n.used/2+1, where n.used is the number of 
observations not missing in the original time series.  This must be supplied if n.used is not a com- 
ponent of ardisL 

frequency the sampling frequency for the time  series. The default is the frequency of the resid component of 
ar.list if present, and 1 otherwise. 

VALUE 
a list containing the following components: 

freq        the vector of frequencies between 0 and the Nyquist at 
which the spectrum estimate is computed, 

spec       a vector if a univariate series, and otherwise a matrix 
with  columns  representing  univariate  series  and rows 
corresponding to the frequencies in  freq.    The  spectrum 
estimate is in decibels (10 times log to base 10 transfor- 
mation), 

coh     a matrix containing the squared coherencies between  each 
pair of series.  If j is less than k, then the pair (j,k) 
corresponds to column (krl)(k-2)/2 + j.  For  univariate 
series this component is NULL. 

phase       a matrix like  coh  containing   the  phase  differences 
between  each  pair of series (only for multivariate time 
series).  The units are radians.  These are made continu- 
ous  by  requiring that the first differences be less than 
pi.  To put them back into the range [0,  2  pi)   use the 
modulus  operator %%: e.g. reducedphase <- phase%%(2*pi). 
For univariate series this component is NULL. 
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order       the order of the autoregression in ar.list. 
method     a string describing the method used, 

series     a string containing the name of the  time series,  if 
available from ar.list. 

SIDE EFFECTS 
If plot=TRUE, a plot of the spectrum is produced. 

EXAMPLES 
Called by the feature extraction functions.q 


